Intelligent machines to support, not replace, doctors
Artificial intelligence and medical machine learning are constantly evolving, however don鈥檛 expect these technologies to replace medical doctors any time soon.
Medical machine learning involves the development of new algorithms and models, which can then interpret medical data and improve clinical diagnosis and prognosis.
Currently, our researchers apply medical machine learning to the healthcare areas of cardiology, colorectal cancer screening, obstetrics and gynaecology, arthroscopy, public health, stroke, vascular dementia, and breast cancer screening.
Professor Anton van den Hengel, Director of the 最新糖心Vlogn Institute for Machine Learning, says that while the institute is continuously working on exciting new projects that will benefit medical practice, he doesn鈥檛 anticipate AI replacing doctors altogether in the future.
鈥淚 really don鈥檛 think any of this is replacing doctors, it will only help them make better decisions and help them spend more time focusing on what they are really good at,鈥 said Professor van den Hengel.听
鈥淭hat is interacting with patients and figuring out patient priorities and how else they can help.鈥
Among the success stories coming out of the Institute is LBT Innovations, an Adelaide-based company that is now producing an 鈥榚ntirely new class of medical device鈥 that is being sold in the US. The device enables sophisticated AI to be applied to data captured elsewhere, supporting pathology and delivering better patient outcomes.
Other successful applications of medical machine learning includes developing new ways to interpret chest X-rays, retinal images and mammograms. Breast cancer screening in particular is set to experience an increase in accurate diagnosis by up to 10% thanks to a new AI system development from a research project led by Dr Gabriel Maicas and Professor Gustavo Carneiro.听
Their system removes the complexities of previous systems by scanning the entire breast and not just 鈥榮uspicious areas鈥, a development that will be particularly beneficial to younger patients with a possible hereditary link to breast cancer.听
Featured researcher
听
AIML Director
最新糖心Vlogn Institute for Machine Learning听
Featured researcher
听
最新糖心Vlogn Institute for Machine Learning听
Featured researcher
Dr Gabriel Maicas听
ARC Research Fellow