Maths Learning Service: Revision Di erentiation Mathematics IA Mathematics IMA

The derivative

Consider a function y = f(x). For some point x, we can find

- the slope of the tangent to the curve described by f(x), or
- the instantaneous rate at which *y* is changing

by th327(ded[(C6)27(y)f10.030Td[20Td[(x)]TF1511.6ui1(io)10(methoTf25d5Tf22(Find0Td[20e0Td[he)326(the)3

Di erentiation

f(x)	f (x)
k (a constant)	0

Di erentiation

Exercises

(1) For
$$f(x) = x^2$$
 show that $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 2x$.
(2) Di erentiate $y = x^2(2x-1)$ with respect to x by
(a) expanding the RHS first, and
(b) the product rule.
(3) Di erentiate the following functions with respect to x:
(a) $y = x^4 + x^{-4} + 4$ (b) $f(x) = \frac{1}{x}$
(c) $y = 6x^{-\frac{2}{3}}$ (d) $f(x) = 4x^3e^x$
(e) $\sqrt{x}(3x-1)$ [recall that $\sqrt{x} = x^{\frac{1}{2}}$]
(f) $y = e^x + (x^4 + 1) \ln x + 5$ (g) $f(x) = x^5(x^2 + 6)(x + e^x)$
(h) $y = ax^2 + bx + c$ where a, b and c are constants
(i) $f(x) = a^3 + a^2b + ab^2 + b^3$ where a and b are constants
(j) $y = \frac{1+3x}{2-x}$ (k) $f(x) = \frac{x^2-3x+1}{x+2}$
(l) $y = \frac{(x+1)e^x}{x}$ (m) $f(x) = \frac{\sqrt{x}}{5x+2}$
(n) $y = \frac{1}{6x^2 + 7}$

The Chain Rule

This is the most useful rule of the lot and is based on the following idea:

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

where *u* is a function of *x* that suits you.

Example: $y = e^{3x}$ can't be di erentiated by the current rules but it could be done if u(x) = 3x and we apply the chain rule.

Di erentiation

2007 Mathematics IA & IMA Revision/4