Maths Learning Service: Revision

Mathematics IA

More Trigonometry

$$\cos \frac{\pi}{2} = x - \text{co-ordinate of } P = 0.$$

Check these results on a calculator.

Example: What are $\sin \frac{3}{4}$, $\cos \frac{3}{4}$ and $\tan \frac{3}{4}$?

By symmetry, the y-co-ordinate of P is the same as for the first quadrant angle $\frac{1}{4}$. Hence

$$\sin\frac{3}{4} = \sin\frac{1}{4} = \frac{1}{\sqrt{2}}.$$

The x-co-ordinate of P is the negative of that for the first quadrant angle $\frac{1}{4}$. Hence

$$\cos \frac{3}{4} = -\cos \frac{1}{4} = -\frac{1}{\sqrt{2}}.$$

Finally,

$$\tan \frac{3}{4} = \frac{1/\sqrt{2}}{-1/\sqrt{2}} = -1.$$

Exercises

- 1. Find the values of
 - (a) $\sin 0$, $\sin \frac{\pi}{2}$, $\sin \left(-\frac{\pi}{2}\right)$, $\sin \frac{\pi}{2}$, $\sin 2$.
 - (b) $\cos 0$, $\cos \frac{\pi}{2}$, $\cos \left(-\frac{\pi}{2}\right)$, $\cos \frac{\pi}{2}$, $\cos 2$.
 - (c) $\tan 0$, $\tan \frac{3}{4}$, $\tan \frac{7}{4}$, $\tan \left(-\frac{7}{4}\right)$.
 - (d) $\sin \frac{7}{6}$, $\cos \frac{7}{6}$, $\tan \frac{7}{6}$.

(e)
$$\sin \frac{11}{6}$$
, $\cos \frac{11}{6}$, $\tan \frac{11}{6}$.

2. Use the unit circle to show that

(a)
$$sin(-) = sin$$

(a)
$$\sin(---) = \sin(---) = -\cos(---) = -\cos(---) = \tan(---) = \tan(---)$$

(c)
$$tan(+) = tan$$

(d)
$$cos(2 -) = cos$$

Circular Functions

Many situations are a ected by circular motion (eg. day length in temperate areas such as Adelaide) and can be modelled using functions of the form

$$y = \sin x$$
, $y = \cos x$ or $y = \tan x$.

Plotting points from the unit circle produces these distinctive graphs (where x is measured in radians):

$$-\frac{3\pi}{2}$$
 $-\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{3\pi}{2}$

Note: The shape of the cosine graph is the same as for sine, but shifted backwards $\frac{1}{2}$ units along the x-axis.

y

$$(0,0) 2\pi$$

$$(\frac{\pi}{2}, D)$$

Trigonometric Equations

Example: Find all solutions to $2 \sin x + \sqrt{3} = 0$.

Re-arranging this equation gives

$$\sin x = -\frac{\sqrt{3}}{2}.$$

We know that sin