Maths Learning Service: Revision

Logarithms

Mathematics IMA

You are already familiar with some uses of powers or indices. For example:

$$10^{4} = 10 \times 10 \times 10 \times 10 = 10,000$$

$$2^{3} = 2 \times 2 \times 2 = 8$$

$$3^{-2} = \frac{1}{3^{2}} = \frac{1}{9}$$

Logarithms pose a related question. The statement

asks "what power of 10 gives us 100?" The answer is clearly 2, so we would write

$$\log_{10} 100 = 2$$
.

Similarly

$$\log_{10} 10,000 = 4$$
 and $\log_2 8 = 3$

In general:

$$a^x = b \Leftrightarrow \log_a b = x$$

The number appearing as the subscript of the log is called the *base* so " \log_{10} " is read as "logarithm to base 10". The two most common bases you will encounter are 10 and the exponential base e=2.71828

Laws of Logarithms

Given the link between indices and logarithms, we should be able to derive laws for logarithms based on the index laws.

Consider the following argument:

The definition of a logarithm allows us to write the number A as $b^{\log_b A}$ for some base b. Similarly, we could write

$$B = b^{\log_b B}$$
 and $A \times B = b^{\log_b (A \times B)}$ (1)

On the other hand, using the index laws, we get

$$A \times B = b^{\log_b A} \times b^{\log_b B} = b^{(\log_b A + \log_b B)}$$

Comparing this expression for $A \times B$ with (1) we have

$$A \times B = b^{\log_b A + \log_b B} = b^{\log_b (A \times B)}$$
.

Since the bases are the same,

$$\log_b A + \log_b B = \log_b (A \times B)$$

By similar arguments the Laws of Logarithms are as follows:

$$\log_b A + \log_b B = \log_b (A \times B)$$

$$\log_b A - \log_b B = \log_b \left(\frac{A}{B}\right)$$

$$\log_b (A^n) = n \log_b A$$

Here are a few examples where these laws can be used to solve equations.

(a) Find x such that $2\log_b 4 - 3\log_b 2 + \log_b 2 = \log_b x$.

$$\begin{array}{rcl} \log_b{(4^2)} - \log_b{(2^3)} + \log_b{2} & = & \log_b{X} \\ \log_b{16} - \log_b{8} + \log_b{2} & = & \log_b{X} \\ \log_b{\left(\frac{16}{8}\right)} + \log_b{2} & = & \log_b{X} \\ \log_b{\left(\frac{16\times2}{8}\right)} & = & \log_b{X} \\ \log_b{4} & = & \log_b{X} \\ \mathrm{SO} & X & = & 4. \end{array}$$

(b) Find t such that $1000 = 100 \left(2^{\frac{t}{5}}\right)$.

$$\begin{array}{rcl}
 & 10 & = & 2^{\frac{t}{5}} \\
 & \log_{10} 10 & = & \log_{10} \left(2^{\frac{t}{5}} \right) & \text{(or any other base, such as } e) \\
 & 1 & = & \frac{t}{5} \log_{10} 2 \\
 & t & = & \frac{5}{\log_{10} 2} \\
 & = & \frac{5}{0.30103} \\
 & = & 16.609 \dots
 \end{array}$$

(c) In the previous example we chose \log_{10} since this made $\log_{10} 10$ very easy and $\log_{10} 2$ could be found on a calculator. If we had used \log_2 we would have had to find $\log_2 10$, for which there is no calculator button.

It is possible to find logs to any base by noting the following argument:

Let
$$y = \log_a b \Leftrightarrow a^y = b$$

$$\ln (a^y) = \ln b$$

$$y \ln a = \ln b$$

$$y = \frac{\ln b}{\ln a}$$

(Using log_{10} works just as well of course.) For example

$$\log_2 8 = \frac{\ln 8}{\ln 2} = \frac{\log_{10} 8}{\log_{10} 2}$$

$$= \frac{2.07944...}{0.69314...} = \frac{0.9031...}{0.3010...}$$

Exercises

- Express as a single logarithm:
 - (a) $\log_b 8 \log_b 2$
- (b) $2 \log_b 3 + \log_b 2$ (c) $1 \log_{10} 4$

- (d) $\log_b a + \log_b \left(\frac{1}{a}\right)$
- Write in terms of $\log_b 2$ and $\log_b 3$:
 - (a) $\log_{h} 6$
- (b) $\log_{h} 8$
- (c) log_b 24
- Find, using a calculator (to 4 decimal places): (6)
 - (a) $\log_2 6$
- (b) $\log_3 8$
- (c) $\log_3 1000$
- (d) log₃ 100,000

- (e) $\log_3 0.001$ (f) $\log_3 0.00001$
- (g) $\log_3 1$

- (7) Solve for *x*:
 - (a) $9 = 10(2^{-\frac{x}{10}})$

Answers to Exercises

(1) (a) 3 (b) 2 (c) 6 (d) 3 (e) 2 (f) 2

(2) (a) $x = 10^5 = 100,000$ (b) $y = 2^5 = 32$ (c) $z = 3^4 = 81$

(3) (a) 1 (b) 0 (c) -1 (d) -2 (e) 0 (f) -2

(4) (a) $\log_b 4$ (b) $\log_b 18$ (c) $\log_{10} \left(\frac{5}{2}\right)$ (d) $\log_b 1 = 0$

(5) (a) $\log_b 2 + \log_b 3$ (b) $3 \log_b 2$ (c) $3 \log_b 2 + \log_b 3$

(6) (a) 2.5850 (b) 1.8928 (c) 6.2877 (d) 10.4795 (e) -6.2877

(f) -10.4795 (g) 0

(7) (a) 246.245 (b) 0.01918