Maths Learning Service: Revision	Mathematics IA	
Index Laws	Mathematics IMA	
	Intro. to Fin. Maths I	

Index laws are the rules for simplifying expressions involving powers of the same base number.

 $a^{m} \times a^{n} = a^{m+n}$ First Index Law $(a^{m})^{n} = a^{mn}$ Second Index Law $\frac{a^{m}}{a^{n}} = a^{m-n}$ Third Index Law $a^{-m} = \frac{1}{a^{m}}$ $a^{0} = 1$ $a^{\frac{1}{n}} = \sqrt[n]{a}$

Examples: Simplify the following expressions, leaving only positive indices in the answer.

(a) $\frac{3^{6}2^{4}}{3^{4}}$	(b) $3^2 \times 3^{-5}$	(c) $\frac{9(x^2)^3}{3xy^2}$	(d) $a^{-1}\sqrt{a}$
$=\frac{3^6}{3^4}\times 2^4$	$= 3^{-3}$	$=\frac{9}{3}\times\frac{x^6}{x}\times\frac{1}{y^2}$	$=a^{-1}a^{\frac{1}{2}}$
$= 3^2 2^4$	$=\frac{1}{3^3}$	$= 3 \times x^5 \times \frac{1}{y^2}$	$=a^{-\frac{1}{2}}$
	$=\frac{1}{27}$	$=\frac{3x^5}{y^2}$	$=rac{1}{a^{rac{1}{2}}}$ or $rac{1}{\sqrt{a}}$

Notes: (1) More involved fractional powers can be dealt with by noting that $\overline{a^{\frac{m}{n}} = (a^{\frac{1}{n}})^m}$ by the Second Index Law. For example,

$$(27)^{\frac{2}{3}} = (27^{\frac{1}{3}})^{\frac{2}{3}}$$

Index Laws

2007 Maths IA, IMA & Intro. Fin. Maths I Revision/2

(3) In general $(ab)^n = a^n b^n$. For example,

$$(3x^2y)^3 = 3^3(x^2)^3y^3 = 27x^6y^3.$$

Exercises

- 1. Simplify the following expressions, leaving only positive indices in the answer.
 - (b) $\frac{3^2 (2^2)^{-2}}{2^3}$ (a) $4^2 \times 4^{-3}$ (c) $x^5 x^8$
 - (f) $(4ab^2c)^3$ (d) $(y^4)^6$ (e) $(-3)^3$
 - (g) $x^2 z^{-3} \times (x z^2)^2$ (h) $2^n \times (2^{-n})^3 \times 2^{2n}$ (i) $3^m \times 27^m \times 9^{-m}$
 - (j) $(a^{\frac{1}{2}} \times a)^5$ (k) $\frac{(-2ab)^2}{2b}$ (l) $\frac{(-a^4b)^3(ab)^5}{-a^8b^8}$

(m)
$$\frac{x^{-1}y^4}{x^{-5}y^{-3}}$$
 (n) $\frac{10a^3b^{-2}}{5a^{-1}b^2}$ (o) $x\sqrt[3]{}$

$$\frac{\sqrt{3}}{\sqrt{2}} + \frac{2}{\sqrt{6}} = \frac{\sqrt{3}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{2}} + \frac{2}{\sqrt{6}}$$
$$= \frac{3}{\sqrt{6}} + \frac{2}{\sqrt{6}}$$
$$= \frac{5}{\sqrt{6}}$$
$$= \frac{5}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}$$
$$= \frac{5\sqrt{6}}{6}$$

Answers to Exercises

1. (a) $\frac{1}{4}$ (b) $\frac{9}{2^7} = \frac{9}{127}$ (c) x^{13} (d) y^{24} (e) -27(f) $64a^3b^6c^3$ (g) x^4z (h) 1 (i) 3^{2m} (j) $a^{15/2}$ (k) $2a^2b$ (l) a^9 (m) x^4y^7 (n) $\frac{1}{2}a^{-4}b^4$ (o) $x^{4/3}$ (p) a^5 (q) $2x^{-1/2}$ (r) a^{-2} (s) 8 (t) $\frac{8}{125}$ (u) 2 2. (a) $5\sqrt{2}$ (b) $6\sqrt{2}$ (c) $5\sqrt{3}$ (d) $\frac{2\sqrt{5}-\sqrt{10}}{10}$

2. (a)
$$5\sqrt{2}$$
 (b) $6\sqrt{2}$
(e) $\frac{5\sqrt{6}}{6}$ (f) $\frac{5\sqrt{3}-6\sqrt{5}}{15}$