


This Topic . . .

This Topic begins by introducing the gradient of a curve. This concept was in-
vented by Pierre de Fermat in the 1630s and made rigorous by Sir Issac Newton and
Gottfried Wilhelm von Leibniz in the 1670s.

The process of �nding the gradient by algebra is calleddi�erentiation . It is a
powerful mathematical technique and many scienti�c discoveries of the past three
centuries would have been impossible without it. Newton used these ideas to discover
the Law of Gravity and to �nd equations describing the orbits of the planets around
the sun.

Di�erentiation remains a powerful technique today and has many theoretical and
practical applications.

The Topic has 2 chapters:

Chapter 1 explores the rate at which quantities change. It introduces the gradient
of a curve and the rate of change of a function. Examples include motion and
population growth.

Chapter 2 introduces derivatives and di�erentiation. Derivatives are initially found
from �rst principles using limits. They are then constructed from known re-
sults using the rules of di�erentiation for addition, subtraction, multiples,
products, quotients and composite functions. Implicit di�erentiation is also
introduced. Applications include �nding tangents and normals to curves.
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Chapter 1

Gradients of Curves

1.1 Describing change

How can we describe the rate at which quantities change?

Example

constant
velocity

gradient
of a line

The distance-time graphbelow shows the distance travelled by a car that has
a constant velocity of 15m=s.1

1   
Gradients of Curves 

 

 

1 

 

 

1.1 Descri

Velocity measures how distance changes with time. You can see that the car
travelled 15m in 1 second, 30m in 2 seconds, etc. When the velocity is constant,
it is calculated using the ratio:2

� distance
� time

=
change in distance

change in time
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1.2 Gradients of curves

How can we determine the vertical velocity of an experimental rocket from its height-
time graph? What is its velocity at exactly t = 2 seconds?

2  Differentiation 
 
Example 
This is the time-height graph for an experimental rocket.  

 

 

 
 
 
 
 
 
 

The rocket climbs up to about 120 m then returns to the ground again. The time-height graph is 
not a straight line, so the change in height with time is not constant.  
 
What 

The second question can be approached by estimating the velocitynear t = 2 :

� at t = 2, the rocket's height is 78:4 m, and at t = 3 the height is h = 102:9 m,
so the vetrical velocity betweent = 2 and t = 3 is approximately:

� height
� time

=
change in height
change in time

=
102:9 � 78:4

3 � 2
= 24:5 m=s

. . . the velocity at t = 2 is about 24.5 m=s.

� at t = 2:5 the height is 91:8 m,
so the vertical velocity betweent = 2 and t = 2:5 is approximately:

�height
�height

=
change in height
change in height

=
91:8 � 78:4

2:5 � 2
= 26:
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These estimates can be interpreted as gradients:

The �rst estimate of the velocity was 24.5m=s.
. . . it is the gradient of the line from(2; 78:4) to (3; 102:9).

The second estimate was 26.8m=s.
. . . it is the gradient of the line from(2; 78:4) to (2:5; 91:8).

The third estimate was 30m=s.
. . . it is the gradient of the line from(2; 78:4) to (2:01; 78:7), and is very close
to the gradient of the line that just touches the curve at(2; 78:4).

The velocity of the rocket at t = 2 is equal to the gradient of the straight line that
just touches the curve att = 2.

Terminology

� A straight line that just touches a curve is called atangent line.

� The gradient of a curveat a point is the gradient of the tangent line to the
curve at that point.

The gradient of the curve at a point (or the gradient of the tangent line)
measures the rate of change of the quantity at the point.
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Example

changing
growth rate

The growth rate of an aphid population can be found from the gradient of the
population-timegraph. This observation is used to describe how the population
changes over 60 days.

In the graph . . .

�
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� the gradient of the curve is positive but reducing fromt = 0 to t = 5, so
. . . the velocity is positive (climbing) and decreasing for0 � t < 5.

� the gradient of the curve is zero att = 5, so
. . . the (vertical) velocity is zero att = 5.

� the gradient of the curve is negative and growing for 5< t � 10 , so
. . . the velocity is negative (returning) and increasing for0 � t < 5.

Example

vertical
velocity &
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Exercise 1.2

1. Sketch the graph ofy = x2 for 0 � x � 2, then draw chords5 from P(1; 1) to
the points Q(0:5; 0:25) and R(1:5; 2:25).

(a) What are the gradients of the chords

i. PQ
ii. PR

(b) Show the tangent toy = x2 at x = 1 has gradient between 1.5 and 2.5 .

(c) By selecting other chords ony = x2
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Exercise 1.3

1. Sketch the graph ofy = x2 for 0 � x � 4 and draw the chords fromP(2; 4) to
the points Q(1; 1), R(3; 9) and S(4; 16).

2. What is the average rate of change ofx2 between

(a) x = 1 and x = 2

(b) x = 2 and x = 3

(c) x = 2 and x = 4

3. Use your answer to question 2 to deduce that the rate of change ofx2 with
respect tox at x = 2 is between 3 and 5.

4. Estimate the rate of change ofx2 with respect to x at x = 2 to within � 0:1.

5. The graph of y = x2 + 1 can be obtained by shifting the graph ofy = x2

upwards by one unit. Use this together with your answer to question 4 to
estimate the instantaneous rate of change ofx2 + 1 with respect to x at x = 2.



Chapter 2

Di�erentiation

The gradient of a curveshows the rate at which a quantity changes on a graph.

If the quantity is described by a function1 then the rate of change of the function
can be found directly by algebra without drawing a graph. This process is called
di�erentiation . We call the rate of change of a function thederivative of the function.

There are two ways of �nding derivatives of functions:

� from �rst principles, following the footsteps of the early mathematicians. This
is mainly of historical interest, however it introduces the important idea of a
limit and explains the notation used in di�erentiation.

� constructing derivatives from known results usingthe rules of di�erentiation.

2.1 From �rst principles ...

The gradient at a point on a curve can be found exactly by algebra when the equation
of the curve is known.

This section shows how the early mathematical explorers calculated gradients and
derivatives.

Example

from
�rst

principles

To �nd the gradient of the parabola y = x2 at the point P(1; 1) :

1. Find the gradient of the line through P(1; 1) and a second pointQ on
the parabola. (See diagram on page 12.)
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P

Q

You can see that whenh is a very small number, the line through the
points P and Q will be very close to the tangent line at (1; 1).

2. The gradient of the line fromP(1; 1) to Q(1 + h; (1 + h)2) is

� y
� x

=
(1 + h)2 � 1

1 + h � 1

=
(1 + 2h + h2) � 1

1 + h � 1

=
2h + h2

h

=
h(2 + h)

h
= 2 + h . . . as long ash 6= 0.

3. When h is very small, the gradient

� y
� x

= 2 + h

will be very close to the gradient of the tangent line at (1, 1).
We can deduce that ....

as h becomes smaller and smaller,
� y
� x

becomes closer to 2.

This shows that the gradient of the parabolay = x2 at (1�

x2

at
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Example

gradient
of y = x2

at x = a

To �nd the gradient of the parabola y = x2 at x = a means to �nd the gradient
at the point (a; a2) on the parabola:

1. Find the gradient of the line throughP(a; a2) and a second pointQ on
the parabola.

We take the second point to beQ(a + h; (a + h)2) whereh stands for a
number.3

P

Q

When h is a very small number, the line going through the pointsP and
Q will be very close to the tangent line at (a; a2).

2. The gradient of the line fromP(a; a2) to Q(a + h; (a + h)2) is

� y
� x

=
(a + h)2 � a2

a + h � a

=
(a2 + 2ah + h2) � a2

a + h � a

=
2ah + h2

h

=
h(2a + h)

h
= 2a + h : : : as long ash 6= 0

3. When h is very small, the gradient

� y
� x

= 2a + h

will be very close to the gradient of the tangent line at (a; a2).

We can deduce that ....

as h becomes smaller and smaller,
� y
� x

becomes closer to 2a.

3If x = a + h, then y = x2 = ( a + h)2.
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we just write
dy
dx

= 2x or
d

dx
(x2) = 2 x

These are read aloud as

deey deex equals2x or dee deex of x squared equals2x

This notation is adjusted when di�erent variables are used. For example, if
the relationship between population (P) and time (t) is given by P = t2, then
the population growth rate is 2t and we can write either

dP
dt

= 2t or
d
dt

(t2) = 2 t

(d) These traditional symbols are clumsy to type without special software and are
often replaced by dashes. For example, we can write

y0 or y0(x) instead of
dy
dx y



16 CHAPTER 2. DIFFERENTIATION

Exercise 2.1

1. Find the derivative of y = x2 at x = 3 from �rst principles by:

(a) sketching the parabolay = x2

(b) marking the points R(3; 9) and S(3 + h; (3 + h)2) on it, where h is some
number.

(c) �nding the gradient
� y
� x

of the line RS

(d) evaluating the limit lim
h! 0

� y
� x

2. Find the derivative of y = x2 � 2x at x = 2 from �rst principles by:

(a) sketching the parabolay = x2 � 2x

(b) marking the points U(2; 0) and V(2 + h; (2 + h)2 � 2(2 + h)) on it, where
h is some number.

(c) �nding the gradient
� y
� x

of the line UV

(d) evaluating the limit lim
h! 0

� y
� x

3. If y = x2 � 2x, then it is known that
dy
dx

= 2x � 2. Use this to:

(a) �nd the gradient of the parabola at the y-intercept

(b) �nd the equation of the tangent line at the y-intercept

4. A �sh population is increasing according to the quadratic model4

P(t) = 600t � t2 �sh/day.

(a) Sketch this model for 0� t � 600.

If P0(t) = 600 � 2t:

(b) �nd the population growth rate when t = 100

(c) �nd when the population growth rate is zero

(d) �nd the maximum size of the population

4formulae representing real life situations are frequently calledmodels.
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There are two powers that occur frequently and whose derivatives are worth mem-
orising: 1 (= x0) and x (= x1) .

If y = 1 (= x0) , then
dy

I

f

y

I

f

x

(

=

x

1

)

,

t

h

e

n

x
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2.2.2 Polynomials

Many mathematical functions are built from simpler functions such as powers. We
use this to construct their derivatives.

The general form of apolynomial of degreen in x is

axn + bxn� 1 + : : : + dx + e ,

wherea, b, . . . , d, eare numbers. It is constructed by adding or subtracting multiples
of powers of a single variable (x in this case), and a constant term.

It can be di�erentiated by using the following rules:

Rule 1 (constants)
The derivative of a constant is zero.

f (x) = c =) f 0(x) = 0

Rule 2 (multiples)
The derivative of a constant multiple is the multiple of the derivative.

y = cf (x) =) y0 = cf 0(x)

Rule 3 (sums)
The derivative of a sum of terms is the sum of their derivatives.

y = f (x) + g(x) + : : : =) y0 = f 0(x) + g0(x) + : : :

Example

applying the
rules for

di�erentiation

1. If y = 100x
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Rule 3 can also be applied to to di�erences.6 This is because a di�erence such as
f (x) � g(x) can be rewritten as the sum off (x) and (� 1)g(x). We don't bother
to write down every detail when di�erentiating, but take it for granted that Rule 2
and 3 imply that:
the derivative of a sum (or di�erence) of terms is the sum (or di�erence) of their

derivatives.

Example

derivatives
of di�erences

1. If y = � x2 + 2x + 3, then y0 = � 2x + 2.

2. If y = x2 � 2x + 3, then y0 = 2x � 2.

3. If y = x2 + 2x � 3, then y0 = 2x + 2.

4. If y = ( x + 3)( x � 7), then

y = ( x + 3)( x � 7)
= x2 � 4x � 21

y0 = 2x � 4

Example

vertical
velocity

&

maximum
height

The height h (metres) of an experimental rocket aftert seconds is given by

h = 49t � 4:9t2 m=s:

The vertical velocity (rate of change of height with time) is

dh
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The rocket reaches its maximum height when its vertical velocity is 0m=s.
This occurs when

dh
dt

= 49 � 9:8t = 0 =) t =
49
9:8

= 5 s
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2.2.3 Products and quotients

When functions are built from the products and quotients of simpler functions, we
can use the following rules for constructing their derivatives.

Rule 4 (products)
The derivative of a product is the derivative of the �rst function multiplied by
the second function, plus the �rst function multiplied by the derivative of the
second function.

y = f (x)g(x) =) y0 = f 0(x)g(x) + f (x)g0(x)

Example

products
f 0g + fg 0

(a) If y = ( x + 1)( x2 + 2), then

y0 = 1 � (x2 + 2) + ( x + 1) � 2x
= 3x2 + 2x + 3

(b) If f (x) = 15 � 3(x + 1)( x2 + 2), then

f 0(x) = 0 � 3[1� (x2 + 2) + ( x + 1) � 2x]
= � 3(x2 + 2x + 3)

Exercise 2.2.3

1. Use the product rule to di�erentiate the following

(a) y = x2(2x � 1)

(b) y = ( x + 1)( x3 + 3)

(c) y = ( x3 + 6x2)(x2 � 1) + 20

(d) u = (7 x + 3)(2 � 3x) + ( x + 35 11.9552 T7m]TJ/F25 11.9552 Tf 10.406 0 01.9552 Tf 9.308(g7+6 Tf 21.461 0 Td )J/F23 7.9701 Tf 6.652 4.338 Td [(2)]TJ/F15 11.9552 Tf 7.389 -4.338 Td [(+)-222(2)]TJ/F25 11311.552 Tf 6.65o52 Tf 9.457e1.9552 Tf 16.978 0 Td [(x)]TJ/F23 7.9701 Tf 6..309 0 Td [(+)-222(3)(2)]TJ/F28 11.8011.9552 Tf 10.406 0 01.958.6TJ/F15 11.9552 Tf25 11.9552 Tf -74.03 -26.052 Td [(f)]TJ/F29 7.9701 Tf 7.046 4.338 Td [(0)]TJ7 11.9552 Tf -194.37 -31.741 Td [((b))]TJ/F15 11.9(+)-222(35 11.955-4.338 Td [(�)]TJ/F15 11.4(+)-223(()]TJ/F25 11.9552 Tf 41.1366.052 Td [(f)]TJ/F29 7.9701 Tf 78046 4.338 Td [(0)]TJ3 11.9552 Tf -194.37 -31.741 Td [((b))]TJ/F15 11.9552 5 11.9552 Tf 5.853 0 Td [ Tf 9.984 0 46.412-278(()]TJ/F25 f)-70(1.9552 Tf 16.978 0 Td [(x)]TJ/F2378(368.652 0 Td [())]TJ/F25 11.9552 Tf 4.552 0 Td [(g)]TJ/F15 11.9552 Tf 6.035 0 Td [(()]TJ/F25 11.9552 Tf 4.552 0 Td 1.9552 Tf 8J
0 g 0 G
 -126.037 -120 9.86.652 0 Td [())-222(+)-222(()]T6f 7.389 -4.339 Td [(+)-222(2))-222(+)-223(()]TJ/F25 11.9552 Tf 41.137 0 Td [(x)]TJ/G
 -126.037 -19.428 Td [(9652 0 Td [())-222(+)-222(()]TJ/F25 11.5552 Tf 23.523 0 Td [(x)]TJ/F15 11.9552 Tf 9.308 0 Td [)]TJ/F15 11.9552 Tf 7.389 -4. Td [(1))]TJ
0 g 0]TJ57255.499 Td [(Exercise)-375(2.2.3)]TJ
ET
q
1 0 0 1 171.213 332.964 cm-276F25552 J/F750507)]TJ/F2g12.425 0 Td [(x)]TJ/F23 7.9701 Tf 6.652 4.338 d [())-278(=)]TJ/F28 11.9552 Tf 14.985 0 Td [())]TJ/F25 11.9552 Tt652 4.338 Td [(2)]TJ/F227050)]TJ/F25 11.9552 Tf 1011.9552 Tf 10.406 0 01.952 T511.9552 Tt652 4.338 Td [(2)]TJ6.8(2
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Rule 5 (quotients)
The derivative of a quotient is the derivative of the numerator multiplied by
the denominator, less the numerator multiplied by the derivative of the de-
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Exercise 2.2.4

1. If f (x) = x2 � 3 and g(x) = x5, �nd

(a) f (g(x)) or f � g(x)

(b) g(f (x)) or g � f (x)

2. If f (x) = 3 x + 2 and g(x) =
p

x, �nd

(a) f (g(x))

(b) g(f (x))

3. If h(x) = 2 x2 + 1 and j (x) = x3, �nd

(a) h � j (x)

(b) j � h(x)

4. If l (x) = x2 and m(x) = 1
2x, �nd

(a) l(m(x))

(b) m(l(x))

5. Identify outside and inside functions for the composite functions below.7

(a) (x + 1) 5

(b)
p

x � 4

(c) (x2 � 3x + 4) 2

(d) (3x +
p

x)3

6. If f (x) = x2, g(x) = x + 1 and h(x) = 2 x, �nd f (g(h(x))) or f � g � h(x).

7When there is more than one answer, choose the inside and outside functions that are simplest.
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9. Use the product, quotient and chain rules to di�erentiate:

(a) x
p

x + 1 (b) x2
p

2x + 3 (c)
x

p
3x + 4

(d)
x2

p
x2 + 1

10. The graph ofy =
x

p
x4 + 1

is shown below forx � 0.

(a) Find
dy
dx

(b) Solve
dy
dx

= 0

(c) Find the maximum value of
x

p
x4 + 1

for x � 0.
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2.2.5 Implicit Di�erentiation

When functions areexplicitly de�ned in the form y = f (x) they can be di�erentiated
using the previous rules of di�erentiation. However functions can also beimplicitly
de�ned.

Example

implicit
relationship

Consider the equation of the circle

x2 + y2 = 4

with centre (0; 0) and radius 2.

This is an example of animplicit relationship
betweenx and y.

 

2

(0; 0)

Solving this relationship for y gives y explicitly in terms of x, that is as the
subject of a formula with x as the independent variable.

x2 + y2 = 4

y2 = 4 � x2

y = �
p

4 � x2

The gradient of the tangent line tox2 + y2 = 4 at (
p

2;
p

2), can now be found
by di�erentiating y =

p
4 � x2, giving . . .

dy
dx

=
� x

p
4 � x2

=
�

p
2

q
4 � (

p
2)2

= � 1

It may be di�cult or impossible to solve an implicit relationship betweenx and y in
such a way as to makey the subject of a formula withx as the independent variable.

In these cases we use the technique ofimplicit di�erentiation to �nd
dy
dx

.

Example

implicit
di�erentiation

To �nd
dy
dx

directly from the implicit relationship x2 + y2 = 4 . . .

1. Assume thaty is a function of x, writing it as y(x).
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2. Di�erentiate both sides of x2 + y2 = 4, e.g.

x2 + y2 = 4
d

dx
(x2 + y2) =

d
dx

(4)

2x +
d

dx
(y2) = 0 . . . di�erentiating each term

2x + 2y
dy
dx

= 0 . . . by the chain rule

2y
dy
dx

= � 2x

dy
dx

= �
x
y

. . . provided y 6= 0

The derivative can now be used to �nd the gradient of the tangent line at any
point on x2 + y2 = 4. For example, at the point (

p
2;

p
2) :
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The equation of the tangent line is :

y = � x + c; for some numberc:

Substituting (1; � 1) into this equation shows thatc = 2, and that the equation
of the tangent line at (1; � 1) is y = � x + 2.

A normal to a curve is a line which is perpendicular to the tangent at the
point of contact.
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Substituting (
p

2; 2
p

2) into this equation shows that

c =
3
p

2
2

;

and that the equation of the tangent line at (
p

2; 2
p

2) is y = 2x +
3
p

2
2

.

Exercise 2.2.5

1. Find
dy
dx

if :

(a) x2 + y2 = 16

(b) x2 + 3y2 = 9

(c) x2 � y2 = 25

(d) x2 + xy + y2 = 10

(e) x3 + 2x2y + y2 = 10

2. Find the gradient of the tangent line to:

(a) x2 + y2 = 1 at (
p

2;
p

2)

(b) x2 � xy + y2 = 1 at (1 ; 1)

(c) x + y = 2xy at (1; 1)

3. Find the equation of the normal to:

(a) x2 + y2 = 8 at (2 ; 2)

(b) x2 +
y2

2
= 3 at (1 ; 2)

4. Show that the normal to the circlex2 + y2 = 1 at the point (a, b) with ab6= 0
always passes through the origin.



Appendix A

First Principles

The graph below shows how a functionf (x) might change betweenx = a and x = b.

8  Differentiation 
 
1.3  The rate of change of a function 

The velocity of a car descibes how distance changes with time. The population growth rate 
describes how a population changes with time. How can we describe the way a general function 
f (x) changes with x

The gradient of the chord from (a; f (a)) to ( b; f (b) is

� y
� x

=
change iny
change inx

=
f (b) � f (a)

b� a
:

As the width of the interval [a; b] decreases, the approximation

� y
� x

=
f (b) � f (a)

b� a
:

becomes closer tothe gradient of the tangent lineto the graph of f (x) at x = a, and
so to the derivativeof f (x) at x = a.

If we put b= a + h, then the derivative of f (x) at x = a is given by the limit

dy
dx

= lim
� x ! 0

� y
� x

= lim
h! 0

f (a + h) � f (a)
(a + h) � a

32
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De�nition

The derivative of y = f (x) at the point ( a; f (a)) is given by the limit

dy
dx

= lim
h! 0

f (a + h) � f (a)
h

Example

�rst
principles

at x = a

Find the derivative of y = x2 at x = a using �rst principles

1. From the de�nition . . .

dy
dx

= lim
h! 0

(a + h)2 � a2

h

2. Expanding, then simplifying and taking the limit . . .

dy
dx

= lim
h! 0

(a2 + 2ah + h2) � a2

h

= lim
h! 0

2ah + h2

h
= lim

h! 0
2a + h

= 2a

The derivative at x = a is
dy
dx

= 2a

Example

�rst
principles

without
using
x = a

Di�erentiate y = x2 + 4x + 2 using �rst principles

1. From the de�nition . . .

dy
dx

= lim
h! 0

[(x + h)2 + 4( x + h) + 2] � [x2 + 4x + 2]
h

2. Expanding, then simplifying and taking the limit . . .

dy
dx

= lim
h! 0

[x2 + (2 h + 4) x + ( h2 + 4h + 2)] � [x2 + 4x + 2]
h

= lim
h! 0

2hx + ( h2 + 4h)
h

= lim
h! 0

2x + h + 4

= 2x + 4

The derivative is
dy
dx

= 2x + 4
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Example

cubic
function

Di�erentiate y = x3 using �rst principles

1. From the de�nition . . .

dy
dx

= lim
h! 0
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Exercise A

1. Use �rst principles to �nd the derivative of y = x2 � x at x = a.

2. Di�erentiate y = x4 using �rst principles.

3. Di�erentiate f (x) =
x � 1
x � 2

using �rst principles.



Appendix B

Answers

Exercise 1.1

1(a)

1(b) The constant velocity is 30m=s.

1(c)

1(d) The constant acceleration is 0m=s2.

Exercise 1.2

1(a) (i) mP Q =
1 � 0:25
1 � 0:5

= 1:5 (ii) mP R =
2:25� 1
1:5 � 1

= 2:5

1(b) This follows from mP Q < m tangent < m P R .
1(c) Using the pointsL(0:9; 0:81) and M (1:1; 1:21), mtangent � 2 is an estimate to
within � 0:1 as

mP L = 1:9 < m tangent < m P M = 2:1

2. (i) matches (a), (ii) matches (c), (iii) matches (d), (iv) matches (b)
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Exercise 1.3

1.

0 1 2

sQ(1; 1)

sP(2; 4)

sR(3; 9)

sS(4; 16)

y = x2

2(a) mQP = 3 2(b) mP R = 5 2(c) mP S = 6
3. As mQP � mtangent � mP R

4. Using the pointsL(1:9; 0:81) and M (2:1; 1:21), mtangent � 4 is an estimate to
within � 0:1 as

mP L = 3:9 < m tangent < m P M = 4:1

5. When the graph is shifted the new tangent line remains parallel to the old, and
so has the same gradient.

Exercise 2.1

1(a) & 1(b)

0 1 2

sR(3; 9)

sS(3 + h; (3 + h)2)
y = x2

1(c) & 1(d) � y
� x

=
(3 + h)2 � 9
(3 + h) � 3

=
6h + h2

h
= 6 + h

dy
dx

= lim
h! 0

� y
� x

= lim
h! 0

6 + h

= 6
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2(a) & 2(b)

sU(2; 0)

sV (2 + h; (2 + h)2 � 2(2 + h))

y = x2 � 2x

2(c) & 2(d) � y
� x

=
[(2 + h)2 � 2(2 + h)] � 0

(2 + h) � 2

=
2h + h2

h
= 2 + h

dy
dx

= lim
h! 0

� y
� x

= lim
h! 0

2 + h

= 2

3(a) The y-intercept is (0; 0). The gradient ism = � 2.
3(b) The tangent line isy = � 2x.

4(a)

0 200

P(t) = 600t � t2

4(b) The population growth rate is P0(100) = 600� 2 � 100 = 400.
4(c) Solving P0(t) = 0 gives t = 300 days.
4(d) This occurs whenP0(t) = 0 at t = 300. The maximum population size is
P(300) = 90; 000.
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Exercise 2.2.1

1(a)
dy
dx

= 20x19 1(b)
dy
dx

= �
2
x3

1(c)
dv
du

= 3u2 1(d)
dv
du

= �
1

2u
p

u

2. As h0(






