MathsStart

This Topic...

This topic

Exponential Equations & Logarithms

Example

Example

Solve the equation $2e^{4x} = 3$

Answer

2⁴ 3 ⁴ 1.5 4 In1.5 <u>In1.5</u> <u>4</u> 0.1013

Example

Solve the equation $(e^x)^2 = 3$

Answer 1

Take square roots of both sides:

$$(e^{x})^{2}$$
 3
 e^{x} $\sqrt{3}$
 x $\ln(\sqrt{3})$
0.5493

Answer 2

Use index rule 3 from Topic 7: $(a^n)^m = a^{nm}$ $(e^x)^2$ 3 e^{2x} 3 2x ln 3 x $\frac{\ln 3}{2}$ 0.5493

Problems 1.2

1. Solve the following equations:

(a) $e^x = 1$	(b) $e^x = 2$	(c) $e^x = 3$	(d) $e^x = 2^2$	(e) $e^x = 3^2$
(f) $10^x = 1$	(g) $10^x = 2$	(h) $10^x = 2^2$	(i) $e^x = 2^{2}$	(j) $e^x = \sqrt{3}$

2. Solve the following equations:

(a) $e^x 2 = 0$	(b) $2e^x$ $5=0$	(c) $3e^x = 2 + 2e^x$	(d) $\frac{1}{1}$ 0.75
(e) $10^{2x} = 1$	(f) $10^{2x} = 2$	(g) $10^{2x} = 2^2$	(h) $\frac{1}{1 \ 10^2}$ 0.75

3. Use the index rules to solve the following equations.

(a) $e^{x} \cdot e^{2x} \cdot e^{3x} = 30$ (b) $(e^{2x})^{3} = 10$ (c) $\sqrt{5}$ 2.7 (d) $(e^{3x})^{4} = 10e^{2x}$

4. If the population of the earth was 6.5 billion in 2000, and was increasing at 2% per year,

(a) what would the population be in 20 years time?

(b) when would the population reach 15 billion?

2 Logarithm Functions

2.1 The Natural Logarithm Function and its Graph

The equation $e^y = x$ has a solution $y = \ln x$ for every positive value of x, so the natural domain of $\ln x$ is $\{x : x > 0\}$. The graph is show below.

x-intercept is (1, 0) because $e^0 = 1$ ln 1 = 0. *x*-axis when x > 1*x*-axis when 0 < x < 1.

 $y = e^x$ and $y = \ln x$ are related. The diagram below shows that one is the reflection of the other across the line y = x.

The reason for this is that $e^r = s$ $r = \ln s$.

However, $e^r = s$ means that the point (r, s) is on the curve $y = e^x$, and $r = \ln s$ means that the point (s, r) is on the curve $y = \ln x$. This means that (r, s) is on the curve $y = e^x$ whenever (s, r) is on the curve $y = \ln x$. For example, (0, 1) is on $y = e^x$ and (1, 0) is on $y = \ln x$. This is another way of saying that the curves

Problems 2.2

1. Express each of the following as a single logarithm.

(a)	$\ln 6 + \ln 3$	3	(b)	ln 56	5 ln 7	(c)	2 ln 5	(d)	$\ln 5 + 2 \ln 2$
(e)	2 ln 10	2 ln 2	(f)	1 1	ln (2 <i>e</i>)	(g)	2 + ln 3	(h)	0

2. Solve the following equations

(a) $\ln (x \ 1) \ \ln x = \ln 0.5$ (b) $\ln (x \ 1) + \ln x = \ln 6$

3. Solve the following exponential equations

(a) $2^x = 4.1$ (b) $3^x = 9.1$ (c) $2 \quad 3^x = 53$ (d) $41 \quad 10 \quad 3^x = 23$

2.3 Properties of the common logarithm

The graph of the common logarithm function $y = \log x$ is similar to the graph of the natural logarithm $y = \ln x$. It is the reflection of the graph of the graph of $y = 10^x$ across the line y = x.

The common logarithm has similar properties to the natural logarithm:

If u and v are any positive numbers, and n is any index,

3 Growth & Decay II

3.1 Growth and Decay

We can solve any exponential equation using logarithms.

A population that is growing at a constant rate will have

 $P(t) = P(0) e^{rt}$

members after time t, where

- P(0) is the initial population and
- *r* is the constant growth rate per unit time.

Example

The population of China was 850, 000, 000 in 1990 and was growing at the rate of 4% per year. When did the population reach 1,000,000,000?

Answer

The initial population (in 1990) is P(0) = 850,000,000. The growth rate is 0.04 per year.

The model is () (0) $^{0.04}$, we need to find when P(t) = 1,000,000,000

Rewrite 4% as a decimal number.

The population reached 1,000,000,000 in 1994.

Example

The population of China was 850, 000, 000 in 1990 and reached 1,000,000,000 in 1994. If it grew at a constant growth rate, what is this growth rate? *Answer*

The initial population (in 1990) is P(0) = 850, 000, 000.

The population in 1994 is *P*(4) = 1,000,000,000

The growth model is

4. The ratio of radioactive isotope C^{14} to the regular isotope C^{12} of carbon is fixed in the atmosphere. Living matter breathes in air, and this same ratio of C^{14} to C^{12} is found in all its cells. When it dies and can no take breath in air, the amount of C^{14} begins to decay at a constant rate of 1.24 x10⁴. Th

Example

If a town had an initial population of 1000 and grew at a constant rate, if the population doubled every 30 years, what is the growth rate?

Answer

Put
$$\frac{\ln 2}{2}$$
 30,
then ln 2 30
 $\frac{\ln 2}{30}$ 0.023

Similarly, the decay rate of a quantity is usually quite small, and its hard to imagine how fast it decays. Because of this the *half-life* is often quoted instead. The *half-life* of a quantity is the time it takes to halve.

A quanity which is decaying at a constant rate will have the amount A(t) = A(t) = A(t)

 $Q(t) = Q(0) \ e^{-rt}$

left after time *t*, where

• Q(0) is the initial amount and

• *r* is the constant *decay* rate per unit time.

Example

One kilogram of a radioactive isotope of iodine has a half life of 7.967 years. After this period of time only 500 gm will remain. After a further 7.967 years only 250 gm (ie. half of 500gm) will remain.

A population decaying at a constant decay rate *r* will be reduced by half every $\frac{\ln 2}{\ln 2}$ units of time every

Example

One kilogram of a radioactive isotope of iodine decays at a rate of 8.7% per day. I6 of 8.7% perg71uof 8.7% pg2

A Appendix: Answers

Section 1.1

$1(a) \log_2 16$	=4 (b) le	$\log_2 1024 = 10$	(c) $\log_2 0$.	(d) $\log_2 1 = 0$	
(e) $\log_3 81$	= 4 (f) lo	$g_4 1024 = 5$	(g) $\log_4 0$.	5 = 0.5	(h) $\log_{10} 1 = 0$
2(a) 2	(b) 4	(c) 0	(d) 1		
(e) 1	(f) 2	(g) 0	(h) 2		
Section 1.2	2				
1 (a) 0	(b) 0.6931	(c) 1.099	(d) 1.386	(e) 2.197	
(f) 0	(g) 0.301	(h) 0.6021	(i) 1.386	(j) 0.5493	
2 (a) 0.6931	(b) 0.	9163	(c) 0.6931	(d)	1.099