最新糖心Vlog

SPATIAL 3010 - Earth Observation III

North Terrace Campus - Semester 2 - 2024

Earth observation interprets image-based information gathered by space and airborne platforms using a wide range of sensors. This course examines the principles and application of remote sensing to a range of disciplines. Principles include the interaction of electromagnetic radiation with the Earth's atmosphere and surface, spectral characteristics of earth surface materials, and the nature of imagery collected by a variety of earth-observation sensors. We discuss the use of spectral data to identify and characterise objects (minerals, soils, vegetation, water), produce thematic maps and monitor changes over time. The nature and application of specialised forms of remote sensing including gamma radiometry, hyperspectral, radar and thermal imagery are also considered. These data are relevant to a wide range of applications including geology, environmental and agricultural science. Information is extracted using digital image processing: correction, enhancement and classification of the digital data and its integration with geographic information systems and field data. Practicals use specialist image analysis software to give hands-on experience with the basics of digital image processing and application to specific projects.

  • General Course Information
    Course Details
    Course Code SPATIAL 3010
    Course Earth Observation III
    Coordinating Unit Ecology and Evolutionary Biology
    Term Semester 2
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 5 hours per week
    Available for Study Abroad and Exchange Y
    Incompatible SOIL&WAT 3010
    Assessment Exam, practical exercises
    Course Staff

    Course Coordinator: Dr Sami Rifai

    Course Timetable

    The full timetable of all activities for this course can be accessed from .

  • Learning Outcomes
    Course Learning Outcomes
    1 Explain the physical principles and concepts underlying common forms of remote sensing
    2 Describe the sources, nature and characteristics of common forms of remote sensing data
    3 Be able to locate sources of technical information about satellites, sensors and applications
    4 Be aware of new developments and trends in earth observation and its computational analysis
    5 Perform a range of key digital image analyses with computer programming and scripting techniques.
    6 Interpret the information provided by digital imagery for a range of applications and prepare reports that incorporate outputs from digital image analysis.
    7 Describe how remote sensing is being used for a range of disciplines and applications
    8 Choose appropriate forms of remote sensing and recommend analyses for particular applications
    最新糖心Vlog Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    最新糖心Vlog Graduate Attribute Course Learning Outcome(s)

    Attribute 1: Deep discipline knowledge and intellectual breadth

    Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.

    1,2,3,4,7,8

    Attribute 2: Creative and critical thinking, and problem solving

    Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.

    5,6,7,8

    Attribute 3: Teamwork and communication skills

    Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.

    3,4,5,6,7,8

    Attribute 4: Professionalism and leadership readiness

    Graduates engage in professional behaviour and have the potential to be entrepreneurial and take leadership roles in their chosen occupations or careers and communities.

    1,2,3,4,5,6,7,8

    Attribute 5: Intercultural and ethical competency

    Graduates are responsible and effective global citizens whose personal values and practices are consistent with their roles as responsible members of society.

    7,8

    Attribute 8: Self-awareness and emotional intelligence

    Graduates are self-aware and reflective; they are flexible and resilient and have the capacity to accept and give constructive feedback; they act with integrity and take responsibility for their actions.

    6,7,8
  • Learning Resources
    Required Resources
    The course lecture notes and practical manual are the key resources for this course. Materials will provided on the MyUni website (http://myuni.adelaide.edu.au). Other teaching materials including lecture recordings, additional exercises and practical notes, course documentation and past examination papers will also be posted on this site.
    Recommended Resources
    Recommended (free) online textbook

    The textbook "Earth Observation" is an excellent resource, from which this course will borrow lecture and recommended readings. The first three volumes ("Data", "Processing", and "Applications", which are split in to several parts) are .


    Recommended article

    If you only read one article this year it should be this one!!! () ;-)

    It will give you strong foundation for understanding some of the most important core principals of remote sensing.

    Cracknell, A.P. (1998). Synergy in remote sensing - what's in a pixel? International Journal of Remote Sensing, 19, 2025-2047



    Text and reference books
    * Campbell, J.B. (2006). Introduction to Remote Sensing. 4th edn. Guilford Press.
    Cracknell, A. (2007). Introduction to Remote Sensing 2nd. edn. Taylor and Francis.
    Drury, S.A. (2001). Image Interpretation in Geology 3rd edn. Blackwell Science.
    * Gibson, P.J. and Power, C. H. (2000). Introductory Remote Sensing Principles and Concepts. London, Routledge.
    * Jensen, J.R. (1986). Introductory Digital Image Processing 2nd edn. Prentice Hall.
    Jensen, J.R. (2007). Remote Sensing of the Environment: An Earth Resource Perspective 2nd edn. Prentice Hall.
    * Lillesand, T.M. and Kiefer, R.W. (2000). Remote Sensing and Image Interpretation. 4th edn. John Wiley & Sons, New York.
    McCloy, K. (2006). Resource Management Information Systems: Remote Sensing, GIS and Modelling. 2nd edn. Taylor and Francis.
    Richards, J.A. and Xiuping, J. (1999). Remote Sensing Digital Image Analysis: An Introduction 3rd edn. Springer.

    *Text is available in the reserve collection or short-term loan from the Barr Smith Library.


    Reference journals
    Numerous remote sensing journals are available online through the library. Key journals include
    Canadian Journal of Remote Sensing
    Geocarto International
    IEEE Transactions on Geoscience and Remote Sensing
    International Journal of Remote Sensing
    Journal of Spatial Science
    Photogrammetric Engineering
    Remote Sensing Remote Sensing of Environment

    On-line resources
    A wealth of on-line remote sensing resources and learning materials are available. Details of some are provided via MyUni for the course.
  • Learning & Teaching Activities
    Learning & Teaching Modes
    The course consists of:

    2 x 1 hour lectures per week
    1 x 3 hour practical session per week

    The program is organised so that modules provide background concepts, theory and applications of remote sensing, and are closely followed by practical sessions that implement these methods using programmatically scripted image analysis. 

    It is ESSENTIAL to attend the modules or watch the recorded materials prior to the corresponding practical session. The practical exercises will be difficult without this background, and neither I nor your demonstrators will bring you up to speed on the content you should have covered prior to practical.

    It is absolutely ESSENTIAL to attend the practicals in person. Practicals are all computer based, using coded (programming) image analysis and geospatial tools. There is a learning curve to programming and it is easy to fall behind if you do not attend in person. The practicals will be run in a computer suite with academic and demonstrator. Recorded summaries of the practical will be made available as a reference, along with scripts developed in the practicals, and online reference materials. Academic and demonstrator will be available for help and interaction during scheduled practical times, although students can also ask for assistance via a discussion board in MyUni.

    The assignments draw on knowledge and skills covered in the modules and practicals, with additional interpretation, synthesis and presentation. The assignments will require you to apply the programming image analyses covered in the practicals. If you attend and complete the exercises during practical sessions, you will have achieved much of the work required for the assignments.
    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    A student enrolled in a 3 unit course, such as this, should expect to spend, on average 12 hours per week on the studies required. This includes both the formal contact time required to the course (e.g., lectures and practicals), as well as non-contact time (e.g., reading and revision).
    Learning Activities Summary

    Lecture Practical
    This program is indicative only. Specific details and schedule of weekly topics will be provided through the specific MyUni/Canvas modules.
    Week 1 Introduction to the fundamentals of remote sensing Chapter 1: Mastering the basics (of Earth Engine)
    Week 2 Characteristics and sources of remotely sensed data Chapter 2: Spatial resolution and spectral profiles
    Week 3 Image analysis: Image enhancement, ratios and indices Chapter 3: Image enhancement and visualisation
    Week 4 Image analysis: Principal components and georegistration Chapter 4: Principal components analysis
    Week 5 Image analysis: Classification Chapter 5: Image classification and regression
    Week 6 Evaluating the accuracy of remotely sensed products Chapter 6: Accuracy assessment
    Week 7 Specialist applications: hyperspectral Chapter 7: Hyperspectral analysis
    Week 8 Spatial enhancement, and abstractions Chapter 8: Image masking, and mosaicing
    Week 9 Application: change detection and monitoring Chapter 9: Change detection
    Week 10 Specialist applications: Radar Chapter 10: Change detection continued
    Week 11 EO applications: environmental  Chapter 11:  Research project
    Week 12 EO applications: aquatic Free time for research project



  • Assessment

    The 最新糖心Vlog's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment Task Task Type Percentage of total assessment for grading purposes Hurdle
    Yes/No
    Outcomes being assessed/achieved  Due date
    3 x assignments based on practical exercises  Summative 44% No 1,2,3,4,5,6,7,8
    9 x Tests on theory and practical based content Summative 56% No 1,2,4,7,8
    Assessment Detail
    Tests:
    Six online open-book quizzes based on theory and practicals (50% of total). Due dates throughout semester.

    Practical Assignments:

    Three individual illustrated written reports based on integration of practical exercises and lectures. Due dates throughout semester.
    Submission
    Assignments must be submitted electronically via MyUni. Ensure that you are familiar with procedures for doing this: if in doubt seek assistance in practical classes.

    Do NOT email assignments to the lecturing or demonstrating staff – assignments are not accepted this way.
     
    Extensions for Assessments
    Extensions of deadlines for assessment tasks may be allowed for reasonable causes. Such situations include compassionate and medical grounds of the severity that would justify the awarding of a replacement examination. Evidence for the grounds must be provided when an extension is requested.
    Students are required to apply for an extension to the course co-ordinator before the assessment task is due. Extensions will not be provided on the grounds of poor prioritising of time. 

    Penalties for Late Submission
    If an extension is not applied for, or not granted then a penalty for late submission will apply. A penalty of 10% of the value of the assignment for each calendar day that is late (i.e. weekends count as 2 days), up to a maximum of 50% of the available marks will be applied. This means that an assignment that is 5 days or more late without an approved extension can only receive a maximum of 50% of the mark.

    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through .

  • Student Feedback

    The 最新糖心Vlog places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the 最新糖心Vlog to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.

The 最新糖心Vlog of Adelaide is committed to regular reviews of the courses and programs it offers to students. The 最新糖心Vlog of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.