最新糖心Vlog

APP MTH 4101 - Applied Probability - Honours

North Terrace Campus - Semester 1 - 2021

Many processes in the real world involve some random variation superimposed on a deterministic structure. For example, the experiment of flipping a coin is best studied by treating the outcome as a random one. Mathematical probability has its origins in games of chance with dice and cards, originating in the fifteenth and sixteenth centuries. This course aims to provide a basic tool kit for modelling and analysing discrete-time problems in which there is a significant probabilistic component. We will consider Markov chain examples in the course including population branching processes (with application to genetics), random walks (with application to games), and more general discrete time examples using Martingales. Topics covered are: basic probability and measure theory, discrete time Markov chains, hitting probabilities and hitting time theorems, population branching processes, homogeneous random walks on the line, solidarity properties and communicating classes, necessary and sufficient conditions for transience and positive recurrence, global balance, partial balance, reversibility, Martingales, stopping times and stopping theorems with a link to Brownian motion.

  • General Course Information
    Course Details
    Course Code APP MTH 4101
    Course Applied Probability - Honours
    Coordinating Unit Mathematical Sciences
    Term Semester 1
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 3 hours per week
    Available for Study Abroad and Exchange Y
    Prerequisites (MATHS 1012 or MATHS 2103) or (MATHS 2201 and MATHS 2202) or (MATHS 2106 and MATHS 2107)
    Assumed Knowledge Knowledge of Markov Chains such as would be obtained from MATHS 2103
    Restrictions Honours students only
    Assessment Ongoing assessment, Exam
    Course Staff

    Course Coordinator: Professor Joshua Ross

    Course Timetable

    The full timetable of all activities for this course can be accessed from .

  • Learning Outcomes
    Course Learning Outcomes
    1. demonstrate understanding of the mathematical basis of discrete-time Markov chains and martingales
    2. demonstrate the ability to formulate discrete-time Markov chain models for relevant practical systems
    3. demonstrate the ability to apply the theory developed in the course to problems of an appropriate level of difficulty
    4. demonstrate the ability to conduct a group project applying the theory developed in this course
    5. develop an appreciation of the role of applied probability in mathematical modelling
    6. demonstrate skills in communicating mathematics orally and in writing


    最新糖心Vlog Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    最新糖心Vlog Graduate Attribute Course Learning Outcome(s)
    Deep discipline knowledge
    • informed and infused by cutting edge research, scaffolded throughout their program of studies
    • acquired from personal interaction with research active educators, from year 1
    • accredited or validated against national or international standards (for relevant programs)
    1,2,3,4
    Critical thinking and problem solving
    • steeped in research methods and rigor
    • based on empirical evidence and the scientific approach to knowledge development
    • demonstrated through appropriate and relevant assessment
    1,2,3,4
    Teamwork and communication skills
    • developed from, with, and via the SGDE
    • honed through assessment and practice throughout the program of studies
    • encouraged and valued in all aspects of learning
    4,5,6
    Career and leadership readiness
    • technology savvy
    • professional and, where relevant, fully accredited
    • forward thinking and well informed
    • tested and validated by work based experiences
    3,4,5,6
    Intercultural and ethical competency
    • adept at operating in other cultures
    • comfortable with different nationalities and social contexts
    • able to determine and contribute to desirable social outcomes
    • demonstrated by study abroad or with an understanding of indigenous knowledges
    4,6
    Self-awareness and emotional intelligence
    • a capacity for self-reflection and a willingness to engage in self-appraisal
    • open to objective and constructive feedback from supervisors and peers
    • able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
    4
  • Learning Resources
    Required Resources
    None.
    Recommended Resources
    There are many good books on probability and statistics in the Barr Smith Library, with the following texts being recommended for this course.

    1. "Probability and Random Processes" (Oxford, 2001).
    2. "Introduction to Probability Models" by Sheldon Ross (Academic Press, 2010).
    3. "An introduction to Stochastic Modelling" by Taylor and Karlin (Academic Press, 1998).
    4. "A First Course in Stochastic Processes" by Karlin and Taylor (Academic Press, 1975).
    5. "Elementary Probability Theory with Stochastic Processes" by Kai Lai Chung (Springer-Verlag, 1975).
    6. "An Introduction to Probability Theory and its Applications" by Feller (Wiley, 1968).
    7. "Introduction to Stochastic Models" by Roe Goodman (2nd edition, Dover, 2006).
    8. "Markov chains" by James Norris (Cambridge, 1997).

    For other texts on probability and statistics, try browsing books with call numbers beginning with 519.2.
    Online Learning
    This course uses MyUni exclusively for providing electronic resources, such as notes, videos, quizzes, assignments and solutions et cetera.
  • Learning & Teaching Activities
    Learning & Teaching Modes
    Each week, lecture notes will be provided, designed to be read in advance of viewing videos. Videos will consist of the lecturer explaining key material and examples from the lecture notes.

    The weekly face-to-face or remote contact hour will alternate between (approximately) fortnightly (5 in total) tutorial classes -- providing exercises to enhance learning and confirm understanding including interaction with the lecturer -- and focus classes -- in which the lecturer will recap a topic from the past fortnight, or provide an example, that students appear to be finding challenging and provide an opportunity for questions in relation to it. In the tutorial classes, it is encouraged for students to present their solutions to the class and for discussion with the lecturer and each other.

    Five written assignments, five online quizzes and a mid-semester test provide the assessment opportunities for students to strengthen their understanding of the theory and their skills in applying it, and gauge and demonstrate their progress and understanding.

    The group project allows students to develop their teamwork and communication skills, and apply their knowledge to a challenging problem in a practical environment.

    Level IV and VII Students are offered an additional discussion class with the lecturer each week.

    Interaction with the lecturer is encouraged during contact hours.
    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    Activity Quantity Workload hours
    Weekly online materials 12 weeks 77
    Tutorials 5 15
    Focus classes 7 7
    Mid-semester test 1 1
    Online quizzes 5 5
    Assignments 5 25
    Group project 1 25
    Total 155
    Learning Activities Summary
    Topics Schedule
    Week 1 Basic probability theory Sample space and events. Laws of large numbers and the central limit theorem and their interpretation.
    Week 2 Basic probability theory. Algebras and sigma-algebras of events and probability measure.
    Week 3 Discrete time Markov chains Definition of a discrete time Markov chain (DTMC). Random walks.
    Week 4 Discrete time Markov chains Hitting probabilities and hitting times. Classification of states.
    Week 5 Discrete time Markov chains Recurrence and transience.
    Week 6 Discrete time Markov chains Irreducible DTMCs. Branching processes. Periodicity.
    Week 7 Discrete time Markov chains Limiting behaviour. Long term behaviour and global balance.
    Week 8 Discrete time Markov chains. Partial balance. Time reversal and reversibility.
    Week 9 Martingales Definition of a martingale. Fair games, branching processes and random walks.
    Week 10 Martingales Stopping times and optional stopping theorem. Dominated martingales and Optional stopping times.
    Week 11 Martingales Two dimensional random walks. Identifying martingales.
    Week 12 Martingales and Brownian motion Sub-martingales, super-martingales and construction of martingales. Motivation and definition of Brownian motion with examples. Review.



    The first tutorial in Week 3 covers material from the previous two weeks and other material that should be considered revision. Tutorials in Weeks 5, 7, 9 and 11 cover the material of the previous few weeks.
  • Assessment

    The 最新糖心Vlog's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment task When due Weighting Learning outcomes
    Examination Examination period 35% All
    Assignments Weeks 2, 4, 6, 10 and 12 20% All
    Group project Week 10 20% All
    Mid-semester test Week 8 15% All
    Quizzes Weeks 3, 5, 7, 9 and 11 10% All

    Assessment Related Requirements
    An aggregate score of 50% is required in order to pass this course.
    Assessment Detail
      Assessment task   Set Due Weighting
    Assignment 1 Week 1 Week 2 4%
    Quiz 1 Week 3 Week 3 2%
    Assignment 2 Week 3 Week 4 4%
    Quiz 2 Week 5 Week 5 2%
    Assignment 3 Week 5 Week 6 4%
    Quiz 3 Week 7 Week 7 2%
    Mid-semester test Week 8 Week 8 15%
    Quiz 4 Week 9 Week 9 2%
    Assignment 4 Week 9  Week 10  4%
    Group project Week 2 Week 10 20%
    Quiz 5 Week 11  Week 11 2%
    Assignment 5 Week 11 Week 12 4%
    Exam Exam period 35%


    Note: Level IV and VII Students will have additional and/or alternate questions to Level III Students on the Mid-semester test and Exam..
    Submission
    Assignments must be submitted on time and online via MyUni. Late assignments will not be accepted. Students may be excused from an assignment for medical or compassionate reasons. In such cases, documentation is required and the lecturer must be notified as soon as possible.

    The final written project report must be submitted on time and online via MyUni. You must also submit a PDF version of the report and all source code via email to the lecturer. Late project reports will not be accepted.
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M11 (Honours Mark Scheme)
    GradeGrade reflects following criteria for allocation of gradeReported on Official Transcript
    Fail A mark between 1-49 F
    Third Class A mark between 50-59 3
    Second Class Div B A mark between 60-69 2B
    Second Class Div A A mark between 70-79 2A
    First Class A mark between 80-100 1
    Result Pending An interim result RP
    Continuing Continuing CN

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through .

  • Student Feedback

    The 最新糖心Vlog places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the 最新糖心Vlog to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.

The 最新糖心Vlog of Adelaide is committed to regular reviews of the courses and programs it offers to students. The 最新糖心Vlog of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.