最新糖心Vlog

TRADE 7012 - Trade Statistics

North Terrace Campus - Trimester 1 - 2017

Trade Statistics is a course designed to assist students in the analysis and application of international trade and economic statistics in the postgraduate programs of the Institute for International Trade. The first component of the course will review and revisit the principles of international trade from an applied perspective. It will show how robust data and statics play an important role in decision making in economic and trade policy. The concept of comparative advantage will be discussed, the relationship between trade and economic growth analysed and the impact of trade barriers highlighted. The course will then focus on statistical concepts relevant to international trade and economic analysis. Students will be introduced to several publicly available economic and trade databases and their relevance. The third part of the course will provide students with the theoretical framework for trade and economic analysis. This will include, but not be limited to, the theoretical foundations of the general equilibrium models and partial equilibrium models such as the gravity model of international trade. The last part of the course will provide students with the tools and skills to undertake their own trade statistical research. Students will be introduced to several statistical methods such as trade indicator analysis, trade preference indicators, trade diversion and trade creation and the gravity model to international trade. Activities of this course include the evaluation of trade-related economic reports and a class exercise using online access to trade data sets to develop a trade strategy for countries negotiating trade agreements.

  • General Course Information
    Course Details
    Course Code TRADE 7012
    Course Trade Statistics
    Coordinating Unit Institute for International Trade
    Term Trimester 1
    Level Postgraduate Coursework
    Location/s North Terrace Campus
    Units 3
    Contact 3 x 1.5 day intensive modules with online learning
    Available for Study Abroad and Exchange Y
    Assessment Written assignment
    Course Staff

    Course Coordinator: Dr Uwe Kaufmann

    Course Timetable

    The full timetable of all activities for this course can be accessed from .

  • Learning Outcomes
    Course Learning Outcomes

    On successful completion of this course, students will be able to:

    1 Identify statistical data from economic data bases.
    2 Apply relevant statistical techniques for the analysis of trade and economic data.
    3 Draw on foundation knowledge of international trade and economic resources and research techniques to successfully analyse trade and economic data.
    4 Find and present international trade and economic data for trade policy analysis and recommendations.
    5 Design and undertake efficient statistical trade and economic policy research projects, using skills associated with effective electronic databases and trade statistical analysis.
    最新糖心Vlog Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    最新糖心Vlog Graduate Attribute Course Learning Outcome(s)
    Deep discipline knowledge
    • informed and infused by cutting edge research, scaffolded throughout their program of studies
    • acquired from personal interaction with research active educators, from year 1
    • accredited or validated against national or international standards (for relevant programs)
    1-5
    Critical thinking and problem solving
    • steeped in research methods and rigor
    • based on empirical evidence and the scientific approach to knowledge development
    • demonstrated through appropriate and relevant assessment
    2-5
    Teamwork and communication skills
    • developed from, with, and via the SGDE
    • honed through assessment and practice throughout the program of studies
    • encouraged and valued in all aspects of learning
    2-5
    Career and leadership readiness
    • technology savvy
    • professional and, where relevant, fully accredited
    • forward thinking and well informed
    • tested and validated by work based experiences
    3-5
    Intercultural and ethical competency
    • adept at operating in other cultures
    • comfortable with different nationalities and social contexts
    • able to determine and contribute to desirable social outcomes
    • demonstrated by study abroad or with an understanding of indigenous knowledges
    4
    Self-awareness and emotional intelligence
    • a capacity for self-reflection and a willingness to engage in self-appraisal
    • open to objective and constructive feedback from supervisors and peers
    • able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
    4, 5
  • Learning Resources
    Online Learning

    Additional background information on trade in services can be found on the following websites:

  • Learning & Teaching Activities
    Learning & Teaching Modes
    The Learning & Teaching modes of this course will comprise of a mix of online and face-to face modules. These will include group work and presentations, discussions and debate.
    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    The Institute requires students undertaking this course to attend all face-to-face modules and to successfully complete all online/e-modules. This course comprise of approximately 36 contact hours (structured learning). In addition to time spent in class, students are expected to devote an additional 120 non-contact hours to study and research work in this course as well as to successfully complete online/e-modules.
    Learning Activities Summary

    The course will be delivered through a mix of three face-to-face sessions (Modules) and online modules.

    Module 1:
    - Review of Excel tools
    - Introduction to statistical methods
    - Introduction to trade economic analysis and tools
    - Introduction to trade indicator tools and analysis

    Module 2:
    - Review and enhancement of trade economic analysis and tools
    - Review and enhancement of trade indicator tools and analysis
    - Introduction to regression analysis and stata

    Module 3:
    - Regression analysis, time series analysis and forecasting techniques
    - Demand for trade analysis
    - Gravity model to international trade
  • Assessment

    The 最新糖心Vlog's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment Task Task Type Due Weighting Learning Outcome
    Data presentation Formative

    Module 1 (date TBA)

    10% 1,2
    Data analysis (Part A) Presentation Formative Module 2 (date TBA) 5% 1,2,3,4
    Date analysis (Part A): Presentation - Peer assessment Formative Module 2 (date TBA) 5% 1,2,3,4
    Date analysis (Part A): Report/Policy brief Formative After Module 2 (date TBA) 25% 1,2,3,4
    Data analysis (Part B) Presentation Summative Module 3 (date TBA) 10% 1,2,3,4,5
    Date analysis (Part B): Presentation - Peer assessment Summative Module 3 (date TBA) 5% 1,2,3,4,5
    Date analysis (Part B): Report/Policy brief Summative End of term (date TBA) 40% 1,2,3,4,5
    Total 100%
    Assessment Detail

    Data presentation (10%)

    Students will work on and resolve a data problem/case assigned by the lecturer and present their results to the class.
     
    Data analysis (Part A): Presentation (5%)

    Students will individually work on a data problem assigned by the lecturer. Students are to apply tools and trade statistical methods discussed during Module 1 and present their findings during Module 2 to the class.
     
    Data analysis (Part A): Presentation - Peer assessment (5%)

    Students are expected to evaluate the conduct and contributions of their fellow class mates' presentation (Data analysis (Part A): Presentation) through peer evaluation in Module 2.

    Data analysis (Part A): Report/Policy brief (25%)

    Taking into account feedback from the lecturer and the class the student has received for their presentation (Data analysis (Part A): Presentation), students are to submit a comprehensive policy brief/report.

    Students are expected to synthesize materials, concepts, topics and tools covered throughout Modules 1 and 2. Students are expected to demonstrate their ability to apply knowledge while expressing themselves clearly and in a structured manner.

    Data analysis (Part B): Presentation (10%)

    Students will individually work on a data problem assigned by the lecturer. Students are to apply tools and trade statistical methods discussed during Module 1 and 2 and present their findings during Module 3 to the class.

    Data analysis (Part B): Presentation - Peer assessment (5%)

    Students are expected to evaluate the conduct and contributions of their fellow class mates' presentation (Data analysis (Part B): Presentation) through peer evaluation in Module 3.

    Data analysis (Part B): Report/Policy brief (40%)

    Taking into account feedback from the lecturer and the class the student has received for their presentation (Data analysis (Part B): Presentation), students are to submit a comprehensive policy brief/report.
    Students are expected to synthesize materials, concepts, topics and tools covered throughout the course. Students are expected to demonstrate their ability to apply knowledge while expressing themselves clearly and in a structured manner
    Submission
    Assignments must be submitted in:

    1. Softcopy through Turnitin on MyUni

    All assignments must be presented professionally with clear headings, appropriate referencing and using one and a half spacing.

    Extensions will only be granted if requests are received in writing to the course coordinator at least 24 hours before the final due date unless they are requested on medical or compassionate grounds and are supported by appropriate documents. Late assignments will be penalised.

    Your assignment must include the IIT assignment cover sheet which can be downloaded from MyUni under “Assignments”. Each page must be numbered with your student ID and name.

    Please contact the course coordinator, preferably by email, for assistance or guidance in relation to course work, assignments or any concerns that may arise. Assignments will normally be returned two weeks after they have been submitted.
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through .

  • Student Feedback

    The 最新糖心Vlog places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the 最新糖心Vlog to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.

The 最新糖心Vlog of Adelaide is committed to regular reviews of the courses and programs it offers to students. The 最新糖心Vlog of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.