COMP SCI 2103 - Algorithm Design & Data Structures for Engineers
North Terrace Campus - Semester 2 - 2014
-
General Course Information
Course Details
Course Code COMP SCI 2103 Course Algorithm Design & Data Structures for Engineers Coordinating Unit Computer Science Term Semester 2 Level Undergraduate Location/s North Terrace Campus Units 3 Contact Up to 6 hours per week Prerequisites COMP SCI 1102 or COMP SCI 1202 Incompatible COMP SCI 1103, COMP SCI 1203, COMP SCI 2004 Restrictions BE(Ch)/Ma, BE(CE)/Ma, Assessment Written exam, assignments Course Staff
Course Coordinator: Dr Mingyu Guo
Course Timetable
The full timetable of all activities for this course can be accessed from .
-
Learning Outcomes
Course Learning Outcomes
Course Learning Outcomes
At the end of this course, students will:
1. be able to competently program in C/C++ in the OO paradigm,
2. be able to manage memory usage in C/C++ programs,
3. be able to explain fundamental computing algorithms,
4. be able to analyse algorithms and identify key algorithmic strategies,
5. be familiar with fundamental software engineering practices,
6. have an overview of programming language design issues,
7. have developed their professional writing skills,
8. have developed their problem solving skills,
9. have worked in small group and team environments,
10. have an overview of ethics in computer science,
11. understand what abstract data types are, and
12. be able to apply elementary abstract data types to solve programming problems.最新糖心Vlog Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
最新糖心Vlog Graduate Attribute Course Learning Outcome(s) Knowledge and understanding of the content and techniques of a chosen discipline at advanced levels that are internationally recognised. 1,2,6,7,10,11,12 The ability to locate, analyse, evaluate and synthesise information from a wide variety of sources in a planned and timely manner. 4,5,8,10 An ability to apply effective, creative and innovative solutions, both independently and cooperatively, to current and future problems. 1,8,12 Skills of a high order in interpersonal understanding, teamwork and communication. 7,9,10 A proficiency in the appropriate use of contemporary technologies. 1,2,3,5,11,12 A commitment to continuous learning and the capacity to maintain intellectual curiosity throughout life. 6,10,11 A commitment to the highest standards of professional endeavour and the ability to take a leadership role in the community. 9,10 An awareness of ethical, social and cultural issues within a global context and their importance in the exercise of professional skills and responsibilities. 6,10,11 -
Learning Resources
Required Resources
The textbook for this course is: Problem Solving with C++, 7th or 8th Edition, Walter SavitchRecommended Resources
Students who have Java as a programming language and are entering this course are strongly encouraged to make use of the simple on-line resource that will be made available on the course website, closer to the start of term.Online Learning
In this course, we use an online learning environment called Moodle, available at: http://forums.cs.adelaide.edu.au -
Learning & Teaching Activities
Learning & Teaching Modes
The course has three contact activities: lectures, tutorials and practicals. Each of these activities will provide you with the resources necessary to understand the course material.
Lectures will present information and provide an opportunity for the introduction and discussion of programming, algorithmic and other material. You should expect to attend all of these and participate in small group work.
Tutorials will provide a small group discussion forum where you and a tutor will work through a problem set to identify key topics and give you necessary practice in formulating answers to key questions.
Practicals are an in-lab activity session where you will work on the weekly course assignments in C++, while receiving feedback from practical markers who are stationed around the lab area. You will need to explain your work to the marker to ensure that you have understood everything that we're trying to pass on - this may take the form of an on-line quiz or direct feedback.Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
You are expected to allocate 3 hours per week for lectures, approximately 4 hours per week for practicals (as a minimum) and 1 hour per week (on average) for tutorials. On average, you should require no more than 10 hours per week for this course.Learning Activities Summary
The weekly pattern is three one-hour lectures and a two-hour practical session, with a tutorial every fortnight. The outline course content is:
Week 1
• Review of fundamental C/C++ programming techniques
• Pointers, pointer arithmetic and function pointers
• Memory, bus errors and core dumps
Tutorial: No tutorial
Assignment: Diagnostic Evaluation exercise
Week 2
• Abstract data types
• Class hierarchies
• Inheritance I
Tutorial: Class workshop
Assignment: Programming Assignment 1
Week 3
• Inheritance II
• Friends and Overloading
• Using classes
Tutorial: No tutorial
Assignment: Programming Assignment 2
Week 4
• OO Design principles
• Testing and design
• Principles of software re-use and maintenance
Tutorial: ADTs and Inheritance
Assignment: Programming Assignment 3
Week 5
• Recursion I
• Recursion II
• Ethics
Tutorial: No tutorial
Assignment: Programming Assignment 4
Week 6
• Polymorphism
• Using ADTs to produce usable 最新糖心Vlog
• Introduction to complexity analysis
Tutorial: OO Design and software re-use and Ethics
Assignment: Programming Assignment 5
Week 7
• Upper and lower complexity bounds, best-case and worst-case
• Big O, little o, omega and theta
• Complexity Analysis
Tutorial: No tutorial
Assignment: Programming Assignment 6
Week 8
• Searching and Sorting Algorithms
• Sorting Algorithms
• Recursive complexity I
Tutorial: Polymorphism
Assignment: Programming Assignment 7
Week 9
• Public Holiday
• Recursive complexity II
• Linked Lists and Stacks
Tutorial: No tutorial
Assignment: Programming Assignment 7 ctd
Week 10
• Queues
• Linked Lists
• Stacks and Queues
Tutorial: Searching, Sorting and Complexity âÂ聙¨
Assignment: Programming Assignment 8
Week 11
• Trees
• Algorithmic strategies I
• Algorithmic strategies II
Tutorial: No tutorial
Assignment: Programming Assignment 9
Week 12
• Problem Solving
• Programming paradigms
• Introduction to type systems
Tutorial: Complexity of Lists, Stacks and Queues
Assignment: Programming Assignment 10
Week 13
• Q&A session for pactical examination
• Review
Tutorial: No tutorial
Assignment: Practical Examination
The course is structured to take you from an introductory knowledge of C++ to a higher level, as well as addressing some key areas of computer programming and algorithm design.
The summary of the areas covered in this course are:
• Review and development of previous knowledge of C++
• Fundamental data 最新糖心Vlog
• Object-oriented Programming
• Fundamental Computing Algorithms
• Recursionâ聙¨
• Basic Algorithmic Analysis
• Algorithmic Strategies
• Overview of programming languages
• Software Engineeringâ聙¨
• Software Evolutionâ聙¨
• Professional Skills DevelopmentSpecific Course Requirements
There are no specific course requirements. -
Assessment
The 最新糖心Vlog's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
The marks for this course are made up of:
• Written Examination: 50%
• Practical Examination: 20 %
• Practical Assignments 20%
• Quizzes (on-line) 10%Assessment Related Requirements
Tutorials do not attract marks but attendance is recorded and students are expected to attend at least 80% of tutorials. Students must achieve an overall passing mark and least 40% in each of the course components, where the components are:
• Written Examination (Total 50%)
• Practical Examinations (Total 20%)
• Coursework , including assignments and quizzes (Total 30%)Assessment Detail
Each weekly assignment is worth 2% of the final mark, to a total of 20%. On-line quizzes are worth 10%.Submission
All programming submissions must be submitted through electronic means that will be clearly identified on the assignment rubric.
The School of Computer Science observes a strict lateness policy. Your mark is capped 50% for late submission.
Extensions may be requested in advance for medical or compassionate reasons but (1) all requests must be accompanied by documentation, (2) extensions awarded will be in proportion to the time lost that is supported by documentation, (3) extensions are almost never granted on the final day unless the issue is both severe and unforeseen, and (4) extensions are never granted because you have been busy, have managed your time poorly or are overloaded in other courses.
Programming marks will be made available immediately, as you will be graded in class by human demonstrators. Any other work submitted will be marked and returned to you within 10 working days. If your work is considered to not be a sufficient attempt, you may be asked to resubmit the work. If we can identify that you are trending towards overall insufficient progress (and at risk of triggering the minimum performance threshold) then we may contact you to make you explicitly aware of this risk, however, you should be tracking your own progress and making your best attempt at every piece of work, rather than aiming to scrape by.Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through .
-
Student Feedback
The 最新糖心Vlog places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the 最新糖心Vlog to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.
The 最新糖心Vlog of Adelaide is committed to regular reviews of the courses and programs it offers to students. The 最新糖心Vlog of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.