APP MTH 7107 - Partial Differential Equations and Waves
North Terrace Campus - Semester 2 - 2019
-
General Course Information
Course Details
Course Code APP MTH 7107 Course Partial Differential Equations and Waves Coordinating Unit Mathematical Sciences Term Semester 2 Level Postgraduate Coursework Location/s North Terrace Campus Units 3 Contact Up to 3 contact hours per week. Available for Study Abroad and Exchange Y Prerequisites (MATHS 2101 or MATHS 2202) and (MATHS 2102 or MATHS 2201) Assumed Knowledge MATHS 2104 Assessment Ongoing assessment, Examination Course Staff
Course Coordinator: Dr Michael Chen
Course Timetable
The full timetable of all activities for this course can be accessed from .
-
Learning Outcomes
Course Learning Outcomes
On successful completion of this course students will be able to:- use knowledge of partial differential equations (PDEs), modelling, the general structure of solutions, and analytic and numerical methods for solutions.
- formulate physical problems as PDEs using conservation laws.
- understand analogies between mathematical descriptions of different (wave) phenomena in physics and engineering.
- classify PDEs, apply analytical methods, and physically interpret the solutions.
- solve practical PDE problems with finite difference methods, implemented in code, and analyse the consistency, stability and convergence properties of such numerical methods.
- interpret solutions in a physical context, such as identifying travelling waves, standing waves, and shock waves.
最新糖心Vlog Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
最新糖心Vlog Graduate Attribute Course Learning Outcome(s) Deep discipline knowledge
- informed and infused by cutting edge research, scaffolded throughout their program of studies
- acquired from personal interaction with research active educators, from year 1
- accredited or validated against national or international standards (for relevant programs)
all Critical thinking and problem solving
- steeped in research methods and rigor
- based on empirical evidence and the scientific approach to knowledge development
- demonstrated through appropriate and relevant assessment
all Teamwork and communication skills
- developed from, with, and via the SGDE
- honed through assessment and practice throughout the program of studies
- encouraged and valued in all aspects of learning
all Career and leadership readiness
- technology savvy
- professional and, where relevant, fully accredited
- forward thinking and well informed
- tested and validated by work based experiences
all Intercultural and ethical competency
- adept at operating in other cultures
- comfortable with different nationalities and social contexts
- able to determine and contribute to desirable social outcomes
- demonstrated by study abroad or with an understanding of indigenous knowledges
all Self-awareness and emotional intelligence
- a capacity for self-reflection and a willingness to engage in self-appraisal
- open to objective and constructive feedback from supervisors and peers
- able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
all -
Learning Resources
Required Resources
Access to the internet.Recommended Resources
- Agarwal, R. P. & O'Regan, D. (2009), Ordinary and Partial Differential Equations With Special Functions, Fourier Series, and Boundary Value Problems, Springer.
- Billingham, J. and King, A.C. (2000) Wave motion, CUP.
- Haberman, R. (1987), Elementary applied partial differential equations: with Fourier series and boundary value problems, 2nd edn, Prentice-Hall.
- Kevrekidis, I. G. & Samaey, G. (2009), Equation-free multiscale computation: Algorithms and applications, Annu. Rev. Phys. Chem. 60, 321-344.
- Kreyszig, E. (2011), Advanced engineering mathematics, 10th edn, Wiley.
- Roberts, A. J. (1994), A one-dimensional introduction to continuum mechanics, World Sci.
- Roberts, A. J. & Kevrekidis, I. G. (2007), 'General tooth boundary conditions for equation free modelling', SIAM J. Scientific Computing 29(4), 1495--1510.
Online Learning
This course uses MyUni exclusively for providing electronic resources, such as lecture notes, assignment papers, and sample solutions. Students should make appropriate use of these resources. Link to MyUni login page: https://myuni.adelaide.edu.au/webapps/login/ -
Learning & Teaching Activities
Learning & Teaching Modes
This course relies on combined lecture and tutorial classes as the primary learning mechanism for the material. A sequence of written or online assignments provides assessment opportunities for students to gauge their progress and understanding.Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
Activity Quantity Workload Hours Lectures/tutorials 36 100 Assignments/assessment 7 56 Total 156 Learning Activities Summary
Lecture classess will explore the following. Conservation of mass and momentum. Separation of variables. Sturm--Liouville BVPs. Discretise 1D space. Model shallow water waves. PDEs in higher dimension. Computational integration. General wave systems. Classification of PDEs, characteristics and shocks.Tutorial work is integrated into lecture class times.
In more detail, the course includes material from the following.
- Conservation of mass and momentum: Car traffic has waves; Conservation of fluid; Momentum PDE for ideal gases; The wave equation; The dispersion relation of waves
- Separation of variables: Linearity empowers analysis; Separation of variables generates boundary value problems
- Wonderful Sturm–Liouville boundary value problems: Self-adjoint operators form Sturm--Liouville problems; Eigenfunctions expand inhomogeneous solutions
- Discretise 1D space: Lagrange’s theorem underpins the method of lines; Find equilibria; Numerical linearisation characterises solution dynamics; PDE-free patch dynamics
- Model shallow water waves: Conservation derives the PDEs; Small amplitude waves; Compute seiches in 1D
- PDEs with at least three independent variables: Vibration of a rectangular membrane; The self-adjoint Sturm--Liouville nature of Helmholtz-like PDEs
- Computational integration: 1D heat/diffusion PDE raises fundamental issues; Crank–Nicolson schemes are reasonably stable and accurate; Invoke sparse matrices for implicit schemes; Crank–Nicolson discretises wave systems; Second order PDEs in 2D
- General wave dynamics: Water waves in finite depth; Energy travels at the group velocity; Wave propagation in multi-dimensions
- Shocking classification of PDEs: Change of variables transforms the PDE; Reduction to the hyperbolic canonical form; Elliptic and parabolic canonical form; Traffic flow and the method of characteristics; Loud uni-directional sound
-
Assessment
The 最新糖心Vlog's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Component Weighting Objective assessed Assignments 30% all Exam 70% all Assessment Related Requirements
An aggregate score of at least 50% is required to pass the course.Assessment Detail
Assessment item Distributed Due date Weighting Continuous assessment TBA TBA 6% Assignment 1 week 1 week 2 4% Assignment 2 week 3 week 4 4% Assignment 3 week 5 week 6 4% Assignment 4 week 7 week 8 4% Assignment 5 week 9 week 10 4% Assignment 6 week 11 week 12 4% Submission
- All written assignments are to be either submitted to the designated hand in boxes within the School of Mathematical Sciences with a signed cover sheet attached, or submitted as pdf via MyUni.
- Late assignments will not be accepted without a medical certificate and a request prior to the due date.
- Assignments normally have a one week turn-around time for feedback to students.
Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through .
-
Student Feedback
The 最新糖心Vlog places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the 最新糖心Vlog to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.
The 最新糖心Vlog of Adelaide is committed to regular reviews of the courses and programs it offers to students. The 最新糖心Vlog of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.