最新糖心Vlog

APP MTH 4052 - Applied Mathematics Topic F - Honours

North Terrace Campus - Semester 2 - 2021

Please contact the School of Mathematical Sciences for further details, or view course information on the School of Mathematical Sciences web site at http://www.maths.adelaide.edu.au

  • General Course Information
    Course Details
    Course Code APP MTH 4052
    Course Applied Mathematics Topic F - Honours
    Coordinating Unit Mathematical Sciences
    Term Semester 2
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 2.5 hours per week
    Available for Study Abroad and Exchange Y
    Restrictions Honours students only
    Assessment Ongoing assessment, exam
    Course Staff

    Course Coordinator: Professor Matthew Roughan

    This is the same course as APP MTH 7088 - Applied Mathematics Topic F
    Course Timetable

    The full timetable of all activities for this course can be accessed from .

  • Learning Outcomes
    Course Learning Outcomes

    In 2021 the topic of this course will be Complex network modelling and inference.

    Syllabus:

    This course will study graphs and networks, and their generalisations as applied to modelling of complex systems of interacting components or actors. We'll go somewhat beyond standard graph theory in that we will consider how quantities associated with links affect real network problems. In particular, we will consider how to statistically infer properties of networks from realistically obtainable metrics when the networks are large, and we cannot query the network directly, but must use indirect measurement strategies. Applications range from management of computer networks to analysis of social phenomenon, such as memes that "go viral".

    Learning Outcomes:

    1. Modelling: model a problem
    - Take a problem stated in words, and convert it into mathematical form
    - Consider assumptions and approximations
    - Deal with incomplete information/ideas by asking questions, and investigation

    2. Analysis: analyse the problem using diverse tools
    - Analysis (mathematical solution of problems)
    - Statistics (incorporating data)
    - Simulation
    - Algorithms

    3. Critically examine results:
    - Sanity checking
    - Close the loop between modelling->analysis->output
    - Sensitivity analysis

    4. Communicate results
    - Mathematical exposition skills

    Pre-requisites and assumed knowledge:

    Mathematics up to second year level will be required, including

    - Probability and Statistics II,
    - Scientific Computing or equivalent.

    In particular, this project will require some programming (Matlab or another language is acceptable).

    Some knowledge of graph theory would be useful.

    最新糖心Vlog Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    最新糖心Vlog Graduate Attribute Course Learning Outcome(s)
    Deep discipline knowledge
    • informed and infused by cutting edge research, scaffolded throughout their program of studies
    • acquired from personal interaction with research active educators, from year 1
    • accredited or validated against national or international standards (for relevant programs)
    all
    Critical thinking and problem solving
    • steeped in research methods and rigor
    • based on empirical evidence and the scientific approach to knowledge development
    • demonstrated through appropriate and relevant assessment
    all
    Teamwork and communication skills
    • developed from, with, and via the SGDE
    • honed through assessment and practice throughout the program of studies
    • encouraged and valued in all aspects of learning
    all
    Self-awareness and emotional intelligence
    • a capacity for self-reflection and a willingness to engage in self-appraisal
    • open to objective and constructive feedback from supervisors and peers
    • able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
    all
  • Learning Resources
    Required Resources
    All required materials will be provided.
    Recommended Resources
    "Networks: An Introduction", M.E.J. Newman, Oxford Uni Press, 2010.
    Online Learning
    This course uses MyUni exclusively for providing electronic resources, such as lecture notes, assignment papers, and sample solutions. Students should make appropriate use of these resources.
  • Learning & Teaching Activities
    Learning & Teaching Modes
    This course relies on combined lecture and tutorial classes as the primary learning mechanism for the material. A sequence of written and/or online assignments provides assessment opportunities for students to gauge their progress and understanding.
    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.



    Activity   Quantity Workload Hours
    Lectures 30 90
    Tutorials 6 18
    Assignments 4 24
    Project 1 24
    Total 156
    Learning Activities Summary
    Lecture Outline
    1. Basics
      • graph theory basics
      • graph metrics
      • random graph models
      • algorithms on graphs
    2. Advanced Topics
      • graph generalisations: hyper-graphs and meta-graphs
      • graph algebras
    3. Inference
      • sampling from networks
      • inference on graphs: network tomography
  • Assessment

    The 最新糖心Vlog's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Component Weighting Objective Assessed
    Ongoing assessment 50% all
    Exam 50% all

    For details of on-going assessment refer to my-uni course. 
    Assessment Related Requirements
    An aggregate score of at least 50% is required to pass the course.
    Assessment Detail
    Assessment item Distributed Due date Weighting
    Assignment 1 Week 2 Week 4 5%
    Assignment 2 Week 4 Week 6 5%
    Assignment 3 Week 7 Week 9 5%
    Assignment 4 Week 9 Week 11 5%
    Project Week 6 Week 13 10%
    Submission
    Homework assignments must either be given to the lecturer in person or left in the box outside the lecturer's office by the given due time. Failure to meet the deadline without reasonable and verifiable excuse may result in a significant penalty for that assignment. The last day on which a miniproject may be submitted is the last teaching day of the semester.
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M11 (Honours Mark Scheme)
    GradeGrade reflects following criteria for allocation of gradeReported on Official Transcript
    Fail A mark between 1-49 F
    Third Class A mark between 50-59 3
    Second Class Div B A mark between 60-69 2B
    Second Class Div A A mark between 70-79 2A
    First Class A mark between 80-100 1
    Result Pending An interim result RP
    Continuing Continuing CN

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through .

  • Student Feedback

    The 最新糖心Vlog places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the 最新糖心Vlog to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.

The 最新糖心Vlog of Adelaide is committed to regular reviews of the courses and programs it offers to students. The 最新糖心Vlog of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.