最新糖心Vlog

MATHS 7103 - Probability & Statistics PG

North Terrace Campus - Semester 1 - 2024

In this course, you will get an introduction to probability theory, random variables and Markov processes. You will learn how to deal with modelling uncertainty, which has direct real-world application in areas such as genetics, finance and telecommunications. It is also the basis for many other areas in mathematical sciences, including statistics, modern optimisation methods and risk modelling.

  • General Course Information
    Course Details
    Course Code MATHS 7103
    Course Probability & Statistics PG
    Coordinating Unit Mathematical Sciences
    Term Semester 1
    Level Postgraduate Coursework
    Location/s North Terrace Campus
    Units 3
    Contact Up to 3.5 hours per week
    Available for Study Abroad and Exchange Y
    Prerequisites MATHS 7027
    Assessment Ongoing assessment, exam
    Course Staff

    Course Coordinator: Dr Lauren Kennedy

    Course Timetable

    The full timetable of all activities for this course can be accessed from .

  • Learning Outcomes
    Course Learning Outcomes
    On successful completion of this course you will be able to:
    1 Demonstrate an understanding of basic probability axioms; the rules and moments of discrete and continuous random variables.
    2 Derive the probability density function (PDF) of transformations of random variables and generate data from various distributions.
    3 Calculate probabilities and derive the marginal and conditional distributions of bivariate random variables.
    4 Find equilibrium probablity distributions.
    5 Calculate probabilities of absorption and expected hitting times for discrete time Markov chains with absorbing states.


    最新糖心Vlog Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    最新糖心Vlog Graduate Attribute Course Learning Outcome(s)

    Attribute 1: Deep discipline knowledge and intellectual breadth

    Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.

    1,2,3,4,5,6,7

    Attribute 2: Creative and critical thinking, and problem solving

    Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.

    5,6,7

    Attribute 3: Teamwork and communication skills

    Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.

    4,5

    Attribute 4: Professionalism and leadership readiness

    Graduates engage in professional behaviour and have the potential to be entrepreneurial and take leadership roles in their chosen occupations or careers and communities.

    6

    Attribute 8: Self-awareness and emotional intelligence

    Graduates are self-aware and reflective; they are flexible and resilient and have the capacity to accept and give constructive feedback; they act with integrity and take responsibility for their actions.

    4,5
  • Learning & Teaching Activities
    Learning & Teaching Modes
    This course relies on topic videos as the primary delivery mechanism for the material. Tutorials are the primary direct contact hours, during which students will both reinforce and employ the understanding obtained through lectures. Weekly quizzes provide regular opportunities for students to gauge their progress and understanding.
    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    Activity Quantity Workload hours
    Videos and study 88
    Tutorials 11 33
    Assignments 5 25
    Online quizzes 12 12
    Total 158
    Learning Activities Summary
    Topics Schedule
    Week 1 Discrete random variables Probability mass function, expectation and variance. Bernoulli distribution, Geometric distribution, Binomial distribution. Derivation of mean and variance.
    Week 2 Discrete random variables Sampling with and without replacement. Hypergeometric distribution and Poisson distribution. Derivation of the Poisson distribution as limiting form of Binomial. Derivation of mean and variance.
    Week 3 Discrete random variables Bounding probabilities, tail sum formula, Markov’s inequality and Chebyshev’s inequality. Probability generating functions and moment generating functions.
    Week 4 Continuous random variables Probability density function, cumulative distribution function, expectation, mean and variance. Moment generating functions and uniqueness theorem. Chebyshev’s inequality.
    Week 5 Continuous random variables The uniform distribution on (a, b), the normal distribution. Mean and variance of the normal distribution. The Cauchy distribution. The exponential distribution, moments, memoryless property, hazard function.
    Week 6 Continuous random variables Gamma distribution, moments, Chi-square distribution. Point processes, the Poisson process, derivation of the Poisson and exponential distributions.
    Week 7 Transformation of random variables
    and bivariate distributions
    Cumulative distribution function method for finding the distribution of a function of random variable. The transformation rule. Discrete bivariate distributions, marginal and conditional distributions, the trinomial distribution and multinomial distribution.
    Week 8 Bivariate distributions  Continuous bivariate distributions, marginal and conditional distributions, independence of random variables. Covariance and correlation. Mean and variance of linear combination of two random variables. The joint Moment generating function (MGF) and MGF of the sum.
    Week 9 Bivariate distributions and
    independent random variables
    The bivariate normal distribution, marginal and conditional distributions, conditional expectation and variance, joint MGF and marginal MGF. Linear combinations of independent random variables. Means and variances. Sequences of independent random variables and the weak law of large numbers. The central limit theorem, normal approximation to the binomial distribution.
    Week 10 Discrete time Markov chains Definition of a Markov chain and probability transition matrices. Equilibrium behaviour of Markov chains: computer demonstration and ergodic, limiting and stationary interpretations.
    Week 11 Discrete time Markov chains Methods for solving Equilibrium Equations using probability generating functions and partial balance.
    Week 12 Discrete time Markov chains Definition of absorbing Markov chains, structural results, hitting probabilities and expected hitting times. Review.



    Tutorials, starting in week 2, will cover material from the previous week(s).
  • Assessment

    The 最新糖心Vlog's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment task Task type When due Weighting Learning outcomes
    Examination (3 hours) Summative Examination period 50% All
    Assignments Formative and summative Weeks 3,5,7,9 and 11 20% All
    Mid-semester test Formative and summative Week 7 20% All
    Online quizzes Formative and summative Weeks 1-12 10% All

    Note that the examination for MATHS 7103 is of 3 hours duration.

    Assessment Related Requirements
    An aggregate score of 50% is required in order to pass this course.
    Assessment Detail
    Assessment task Set Due Weighting
    Assignment 1  Week 2  Week 3  4%
    Assignment 2 Week 4 Week 5 4%
    Assignment 3 Week 6 Week 7 4%
    Assignment 4 Week 8 Week 9 4%
    Assignment 5 Week 10 Week 11 4%
    Submission
    Assignments are submited electronically through MyUni. Late assignments will not be accepted. Assignments will be returned within two weeks. Students may be excused from an assignment for medical or compassionate reasons. In such cases, documentation is required and the lecturer must be notified as soon as possible before the fact.
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through .

  • Student Feedback

    The 最新糖心Vlog places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the 最新糖心Vlog to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.

The 最新糖心Vlog of Adelaide is committed to regular reviews of the courses and programs it offers to students. The 最新糖心Vlog of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.