STATS 3001 - Statistical Modelling III
North Terrace Campus - Semester 1 - 2014
-
General Course Information
Course Details
Course Code STATS 3001 Course Statistical Modelling III Coordinating Unit Statistics Term Semester 1 Level Undergraduate Location/s North Terrace Campus Units 3 Contact Up to 3 hours per week Prerequisites MATHS 1012 (Note: from 2015 the prerequisites for this course will be STATS 2107 or (MATHS 2201 and MATHS 2202). Please plan your 2014 enrolment accordingly). Assumed Knowledge STATS 2107 Assessment ongoing assessment 30%, exam 70% Course Staff
Course Coordinator: Andrew Metcalfe
Course Timetable
The full timetable of all activities for this course can be accessed from .
-
Learning Outcomes
Course Learning Outcomes
1. Explain the mathematical basis of the linear model and its extensions to the generalised linear model and non-linear models.
2. Use the open source programming language R for the analysis of data arising from surveys and designed experiments, and for analysis of time series.
3. Write a report of a statistical analysis that: explains the purpose of the investigation; summarises the findings of the investigation; and documents evidence for the conclusions.
4. Explain the role of statistical modelling in discovering information, making predictions and decision making in a range of applications including engineering, science, business, and social science.最新糖心Vlog Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
最新糖心Vlog Graduate Attribute Course Learning Outcome(s) Knowledge and understanding of the content and techniques of a chosen discipline at advanced levels that are internationally recognised. 1 The ability to locate, analyse, evaluate and synthesise information from a wide variety of sources in a planned and timely manner. 2 An ability to apply effective, creative and innovative solutions, both independently and cooperatively, to current and future problems. 4 Skills of a high order in interpersonal understanding, teamwork and communication. 3 A proficiency in the appropriate use of contemporary technologies. 2 A commitment to continuous learning and the capacity to maintain intellectual curiosity throughout life. 4 A commitment to the highest standards of professional endeavour and the ability to take a leadership role in the community. 4 An awareness of ethical, social and cultural issues within a global context and their importance in the exercise of professional skills and responsibilities. 4 -
Learning Resources
Required Resources
None.Recommended Resources
Recommended resources include the following texts, which are available in the Barr Smith Library.
The R Book (1e), Crawley MJ, 2007.
Nonlinear Regression with R, Hornik K & Parmigiani G, 2009.
Applied Regression Analysis (3e), Draper NR & Smith H, 1998.
An introduction to generalised linear models (2e), Dobson AJ, 2002.
Generalised linear models, McCullagh P & Nelder JA, 1983.
Statistics a guide to the unknown, Tanur J (ed), 1972
The Pleasures of Statistics, Mosteller F, Fienberg SE, Hoaglin DC & Tanur JM, 2010.
Bayesian ideas and data analysis, Christensen R, Johnson WO, Branscum AJ & Hanson TE, 2011.
The journal Significance, American Statistical Association & Royal Statistical Society, is particularly relevant and is available through the Barr Smith Library.
The journal The American Statistician, American Statistical Association, has useful expository articles on statistical modelling.
The internet is also an excellent resource, but you need to be selective.Online Learning
The course material will be available on MyUni. -
Learning & Teaching Activities
Learning & Teaching Modes
Two 1-hour lectures per week.
Practical class, analysing data with R, 1 hour in Weeks 1, 3, 5, 7, 9, 11.
Tutorials, 1 hour in Weeks 2, 4, 6, 8, 10, 12.Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
Activity Number Workload hours Lectures 24 82 Practicals 6 12 Tutorials 6 12 Group presentations 2 20 Assignments 5 30 TOTAL 156 Learning Activities Summary
Week Topic 1 Mathematical models, statistical modelling, random number generation, Gibbs sampler, Metropolis-Hastins sampler. 2 Bivaraite distributions. Correlation and regression in a bivariate normal distribution. Measurement error model. 3 Multiple regression - linear model and geometry of least squares. 4 Multiple regression - model building. 5 Multiple regression - diagnostics and prediction. 6 Multiple regression - application to designed experiments. 7 Multiple regression - application to time series models. 8 Non-linear regression. 9 Generalised linear model - logistic regression. 10 Generalised linear model - count data. 11 Linear mixed effects model. 12 Bayesian models and copulas. Specific Course Requirements
A background in probability and statistics as provided by a typical introductory course. Some experience of using R will be helpful, but not essential. If you have not used R before, it would be a good idea to try doing so before the course starts. You might find either of Introductory Statistics with R, Dalgaard P, 2002, or A Beginner's Guide to R, Zuur AF, 2009, which are available from the Barr Smith Library, useful.Small Group Discovery Experience
You will be asked to work as part of a small group on two short presentations of applications of statistical modelling. -
Assessment
The 最新糖心Vlog's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Task Task type Week Set Week Due Weight Learning
outcomesTutorials (6) Formative 2,4,6,8,10,12 5% All Practicals (6) Formative & summative 1,3,5,7,9,11 5% All Group presentations (2) Summative & formative 6,12 10% All Assignments (5) Formative & summative 2,4,6,8,10 3,5,7,9,11 20% All Examination Summative 60% All Assessment Related Requirements
Aggregate score of at least 50% and a contribution to both presentations is required to pass the course.Assessment Detail
Task Week Set Week Due Weight Assignment 1 2 3 4% Assignment 2 4 5 4% Assignment 3 6 7 4% Assignment 4 8 9 4% Assignment 5 10 11 4% Presentation 1 2 6 5% Presentation 2 6 12 5% Tutorials 2,4,6,8,10,12 5% Practicals 1,3,5,7,9,11 5%
Attendance and active participation at five out of six tutorials contributes 5% to the assessment for this course.
The practicals are based on the use of the programming language R in a computer suite. Attendance and evidence of making substantial progress through the practical exercise contributes 5% to the assessment for this course.
The presentation talks are group exercises, and each member of the group is expected to present part of the talk to the class and any guests. Each presentation contribues 5% to the assessment for this course.
The first presentation will be of an application of statistical modelling from the media: news websites or newspapers; magazines including for example the Scientific American and the New Scientist.
The second presentation will be of an application of statistical modelling from an archived journal in any discipline.
Presentations should not be based on articles from Significance or cases from text books.
Five assignments contribute 20%.
The written examination contributes 60%.Submission
All written assignments are to be submitted to the designated hand-in boxes in the School of Mathematical Sciences with a signed cover sheet attached.Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through .
-
Student Feedback
The 最新糖心Vlog places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the 最新糖心Vlog to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.
The 最新糖心Vlog of Adelaide is committed to regular reviews of the courses and programs it offers to students. The 最新糖心Vlog of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.