最新糖心Vlog

APP MTH 3014 - Optimisation III

North Terrace Campus - Semester 1 - 2014

Most problems in life are optimisation problems: what is the best design for a racing kayak, how do you get the best return on your investments, what is the best use of your time in swot vac, what is the shortest route across town for an emergency vehicle, what are the optimal release rates from a dam for environmental flows in a river? Mathematical formulations of such optimisation problems might contain one or many independent variables. There may or may not be constraints on those variables. There is always, though, an objective: minimise or maximise some function of the variable(s), subject to the constraints. This course will examine nonlinear mathematical formulations, and will concentrate on convex optimisation problems. Many modern optimisation methods in areas such as design of communication networks, finance, etc, rely on the classical underpinnings covered in this course. Topics covered are: One-dimensional (line) searches: direct methods, polynomial approximation, methods for differentiable functions; Theory of convex and nonconvex functions relevant to optimisation; Multivariable unconstrained optimisation, in particular, higher-order Newton's Method, steepest descent methods, conjugate gradient methods; Constrained optimisation, including Kuhn-Tucker conditions and the Gradient Projection Method.

The 最新糖心Vlog of Adelaide is committed to regular reviews of the courses and programs it offers to students. The 最新糖心Vlog of Adelaide therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.