A day in the life of a machine learning engineer
Story written by Dr Sarah Keenihan, AIML
Sam Bahrami is a machine learning engineer at the 最新糖心Vlogn Institute for Machine Learning (AIML), the 最新糖心Vlog of Adelaide.
It won鈥檛 blow your mind to know that checking emails is the first task on his list when he arrives at the AIML building, for work each day.
It what happens afterwards that鈥檚 way more interesting.
鈥淲ell鈥ctually, coffee comes next,鈥 Sam says. 鈥淏ut then I move on to solving problems.鈥
Sam works with Principal Machine Learning Engineer Dr Grant Osborne and other colleagues at AIML to deliver technology solutions for partner industries, including businesses in the transport, health and medical, agriculture and technology sectors.
Working creatively, and in teams
The stereotypical view of a technology whiz working alone, staring at a screen all day doesn鈥檛 apply here.
鈥淲e often work in small groups, and it鈥檚 quite collaborative,鈥 Sam says. 鈥淚t鈥檚 creative too, because we鈥檙e designing and planning how to solve problems that have no clear best solution.鈥
Sam uses code to write instructions that computers can understand 鈥 this is called programming. A series of instructions put together to accomplish a specific task is an algorithm.
In machine learning and artificial intelligence (AI), algorithms are combined under precise operating conditions to create a computer model that can be trained with data.
鈥淪o for example, we can use medical data to train a computer model to detect an abnormality in an X-ray,鈥 Sam says. 鈥淲e use different data sets to train and test each model.鈥
People skills are vital
Good communication skills are important when you鈥檙e an AIML machine learning engineer, as regular meetings with clients are a core activity.
鈥淲e discuss what progress has been made, and identify the next steps in a project,鈥 Sam says. 鈥淭hey have to articulate what they need, and we explain what鈥檚 possible in terms of technology, and then carry it out.鈥
AIML Principal Machine Learning Engineer Grant Osborne agrees.
鈥淭he more you work with clients, the more you realise the interactions with people are as important as the technology,鈥 Grant says. 鈥淲e have to find out what our clients really want, and then translate that down into tasks that get delivered.鈥
鈥淭he key is in listening to the client properly and keeping in touch with them as the work progresses,鈥 says Grant.
Tapping into a pool of expertise
Including Grant and Sam, there are 9 programmers and engineers working in AIML鈥檚 Engineering team.
The group also taps into the expertise of research associates in the AIML building, and more broadly from the 最新糖心Vlog of Adelaide when additional skills are required.
鈥淲e have a core group of researchers here that I know are very solutions-focused,鈥 Grant says. 鈥淚 pull them into my team to advise on the latest models most suited to a particular client problem.鈥
For example, Grant鈥檚 team collaborated with remote sensing expert Dr on a project for PIRSA (the South 最新糖心Vlogn government鈥檚 ). The work involved developing a that has the capability to assist land condition assessment across South 最新糖心Vlogn Pastoral Leases using satellite remote sensing, geospatial data analysis and machine learning. The tool is referred to as CARMS: Condition Assessment and Risk Management System.
鈥淲orking together, we built a system from first principles, using satellite data to highlight anomalies in land used to graze animals,鈥 Grant says. 鈥淚t鈥檚 a great example of creating practical solutions to real problems through bringing together academic and industry expertise.鈥
The 最新糖心Vlogn Institute for Machine Learning is recognised as one of the top artificial intelligence and computer vision research institutions globally. Whether you are a student, researcher or corporation, read more about how we can work together here.