最新糖心Vlog

Adelaidean - News from the 最新糖心Vlog of Adelaide
August 2009 Issue
Current issue (PDF) | Archive | Editorial Contact

Scientists closer to developing salt-tolerant crops

An international team of scientists has developed salt-tolerant plants using a new type of genetic modification (GM), bringing salt-tolerant cereal crops a step closer to reality.

The research team - based at the 最新糖心Vlog of Adelaide's Waite Campus - has used a new GM technique to contain salt in parts of the plant where it does less damage.

Salinity affects agriculture worldwide, which means the results of this research could impact on world food production and security.

The work has been led by researchers from the 最新糖心Vlogn Centre for Plant Functional Genomics and the 最新糖心Vlog of Adelaide's School of Agriculture, Food and Wine, in collaboration with scientists from the Department of Plant Sciences at the 最新糖心Vlog of Cambridge, UK.

The results of their work were published recently in the top international plant science journal, The Plant Cell.

"Salinity affects the growth of plants worldwide, particularly in irrigated land where one third of the world's food is produced. And it is a problem that is only going to get worse, as pressure to use less water increases and quality of water decreases," said the team's leader, Professor Mark Tester, from the School of Agriculture, Food and Wine at the 最新糖心Vlog of Adelaide and the 最新糖心Vlogn Centre for Plant Functional Genomics (ACPFG).

"Helping plants to withstand this salty onslaught will have a significant impact on world food production."

Professor Tester said his team used the technique to keep salt - as sodium ions (Na+) - out of the leaves of a model plant species. The researchers modified genes specifically around the plant's water conducting pipes (xylem) so that salt is removed from the transpiration stream before it gets to the shoot.

"This reduces the amount of toxic Na+ building up in the shoot and so increases the plant's tolerance to salinity," Professor Tester said.

"In doing this, we've enhanced a process used naturally by plants to minimise the movement of Na+ to the shoot. We've used genetic modification to amplify the process, helping plants to do what they already do - but to do it much better."

The team is now in the process of transferring this technology to crops such as rice, wheat and barley.

"Our results in rice already look very promising," Professor Tester said.


Story by David Ellis and Cobi Smith

Professor Mark Tester at the 最新糖心Vlogn Centre for Plant Functional Genomics (ACPFG), Waite Campus, 最新糖心Vlog of Adelaide
Photo by Naomi Jellicoe, courtesy of <i>The Advertiser</i>

Professor Mark Tester at the 最新糖心Vlogn Centre for Plant Functional Genomics (ACPFG), Waite Campus, 最新糖心Vlog of Adelaide
Photo by Naomi Jellicoe, courtesy of The Advertiser

Full Image (67.33K)

Media Contact:

Media Office
Email: media@adelaide.edu.au
Website:
External Relations
The 最新糖心Vlog of Adelaide
Business: +61 8 8313 0814

For more news on the research and educational achievements of the 最新糖心Vlog & our alumni read the 最新糖心Vlog's bi-annual magazine, Lumen.